

BIOKIMIA BIOTRANSFORMATION/ DETOXIFICATION REACTIONS

METABOLISM OF XENOBIOTICS

Xenobiotics

• A **xenobiotic** (Gk *xenos* "stranger") is a compound that is **foreign to the body**.

Xenobiotics can be-

a) **Exogenous-** The foreign molecules which are not normally ingested or utilized by the organism but they gain entry through dietary **food** stuffs, or in the form of certain medicines/**drugs** used for a therapeutic cause or are inhaled through **environment**.

Nsechcides, chemical carcinogens etc.

Xenobiotics

Xenobiotics can be-

 b) Endogenous – Though they are not foreign substances but have effects similar to exogenous xenobiotics. These are synthesized in the body or are produced as metabolites of various processes in the body.

Examples-Bilirubin, Bile acids, Steroids, Eicosanoids and certain fattymetabolites acids.

Xenobiotics

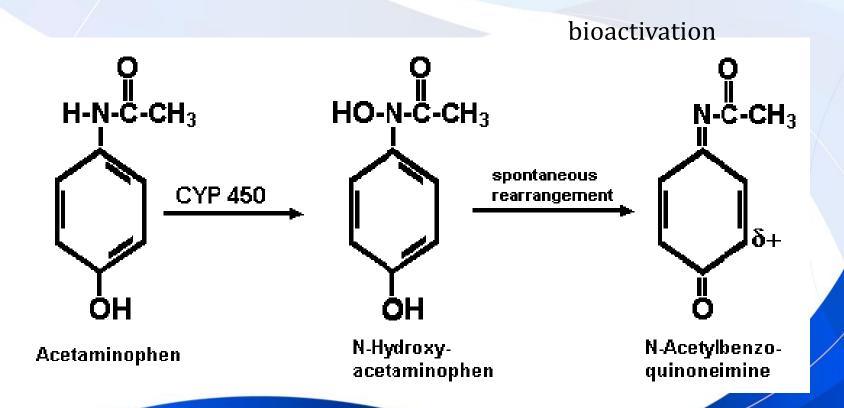
Xenobiotics can produce a variety of **biological effects** including:

- **☐** Pharmacological responses
 - **☐** Activation of Pro-drug
 - ☐ Termination of drug action
- ☐ Immunological responses
- ☐ Toxicity
- Cancers
- Teratogenic

Activation of Pro-drug

parent compound metabolite inactive active L-dopa Dopamine

Termination of Drug Action


parent compound metabolite inactive tropic acid and tropine atropine

Some Xenobiotics Are Metabolized to Carcinogenic Agents

- 3,4-Benzopyrene
- Aflatoxin
- N-Acetylaminofluorene

Metabolites of these agents interact with DNA

Small Amounts of **Acetaminophen** is Converted to the Reactive Metabolite **N-Acetylbenzoquinoneimine**

Bioactivation of acetaminophen; under certain conditions, the electrophile Nacetylbenzoquinoneimine reacts with tissue macromolecules, causing liver necrosis.

Thalidomide is a Teratogen

- THALIDOMIDE: Fetal malformations in humans, monkeys, and rats occur due to metabolism of the parent compound to a teratogen. This occurs very early in gestation.

Metabolism of Xenobiotics

Metabolism of xenobiotics occurs in two phases-

Phase 1, the major reaction involved is **hydroxylation.** In addition to hydroxylation, a wide range of reactions also take place including-

- **□** Deamination,
- **□** Dehalogenation,
- **□** Desulfuration,
- **□** Epoxidation,
- □ Perovvacuation, and

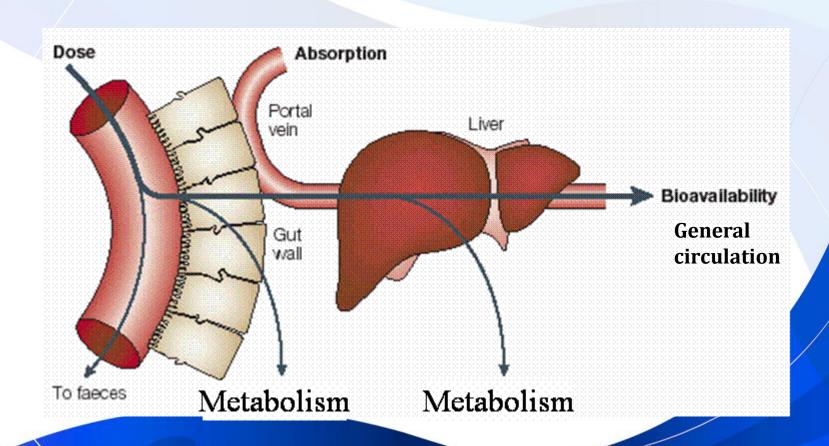
Metabolism of Xenobiotics

- Phase 2, the hydroxylated or other compounds produced in phase 1 are converted by specific enzymes to various <u>polar</u> <u>metabolites</u> by conjugation with-
- ☐ Glucuronic acid,
- Sulfate, acetate,
- **Glutathione**, or
- Certain **amino acids**, or
- By methylation.

Biotransformation/ Detoxification Reactions

- □ All the biochemical reactions involved in the conversion of foreign, toxic and water insoluble molecules to non toxic, water soluble and excretable forms are called Detoxification/Biotransformation reactions
- ☐ The overall purpose of the two phases of metabolism of xenobiotics is to increase their water solubility (polarity and thus excretion from the body.
- ☐ In certain situations these reactions may instead increase the toxicity of a foreign compound, then these are

Entoxification reactions


Role of Liver

- ☐ Main organ involved
- ☐ Hepatocytes contain **wide variety of enzymes** to process xenobiotics
- □ Enzymes are present in **cytosol**, **endoplasmic reticulum** and to lesser extent in other **organelles**
- ☐ Each enzyme represents a large family of gene product
- ☐ Each gene product may be induced by differ

First-pass Effect

- ❖ The first-pass effect is the term used for the hepatic metabolism of a pharmacological agent when it is absorbed from the gut and delivered to the liver via the portal circulation.
- ❖ The greater the first-pass effect, the less the agent will reach the systemic circulation when the agent is administered orally

Drug Metabolism

Hepatic Metabolism

CYPs are found in the smooth endoplasmic reticulum (ER). Hepatocytes contain the full complement of the major DMEs including cytosolic (e.g. Sulfotransferases, Aldehyde Dehydrogenase, Xanthine Oxidase), membrane-bound (CYPs, UGTs, FMOs) and mitochondrial (e.g. MAOs)

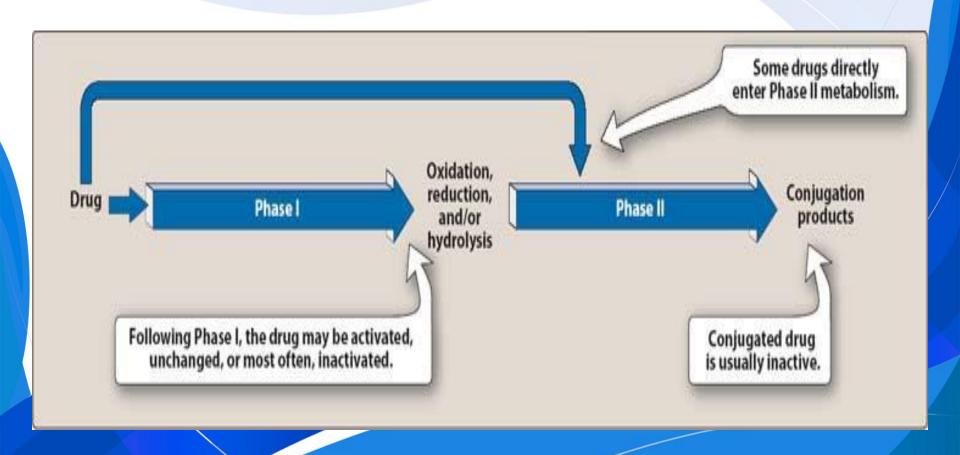
Overview of biotransformation reactions

- ☐ Phase 1 reactions can limit the toxicity of a drug.
- □ Phase 1 reactions can also convert xenobiotics from inactive to biologically active compounds (Metabolic activation). In these instances, the original xenobiotics are referred to as "prodrugs" or "procarcinogens."
- Phase 2/conjugation reactions can convert the active products of phase 1 reactions to less active or inactive specie which are subsequently excreted in the urine or bile.
 - ☐ In a **very few cases**, conjugation may actually increase the biologactivity anobiotic (**Metabolic activation**).

Biotransformation

Potentially toxic xenobiotic

Relatively harmless


Detoxification

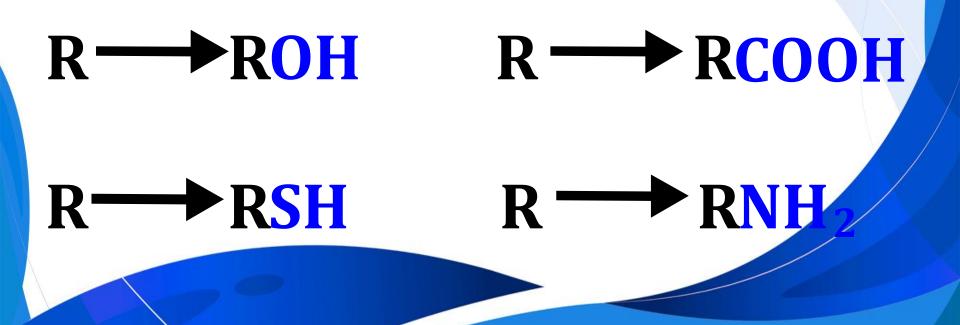
Metabolic activation

Inactive metabolite

Reactive intermediate

Overview of detoxification reactions

Comparing Phase I & Phase II


Enzyme	Phase I	Phase II
Types of reactions	Hydrolysis Oxidation Reduction	Conjugations
Increase in hydrophilicity	Small	Large
General mechanism	Exposes functional group	Polar compound added to functional group
Consquences	May result in metabolic activation	Facilitates excretion

Factors affecting Biotransformation of drugs

- □ Prior administration of the drug or co-administration of other drugs
- Diet
- Hormonal status
- **□** Genetics
- ☐ **Disease** (e.g., decreased in cardiac and pulmonary disease)
- ☐ Age and developmental status
- Luo al status of Liver and Kidney

Phase I Metabolism

Polar groups are exposed on or introduced to a molecule

Phase 1 reactions - Overview

- **Phase I reactions include:**
 - Oxidation
 - **☐** Reduction
 - **☐** Hydrolysis reactions
- They are also called **Hydroxylation reactions** since they introduce or expose a functional group (e.g., -OH) that serves as the active center for sequential conjugation a phase II reaction.

Phase 1 reactions A) Oxidation

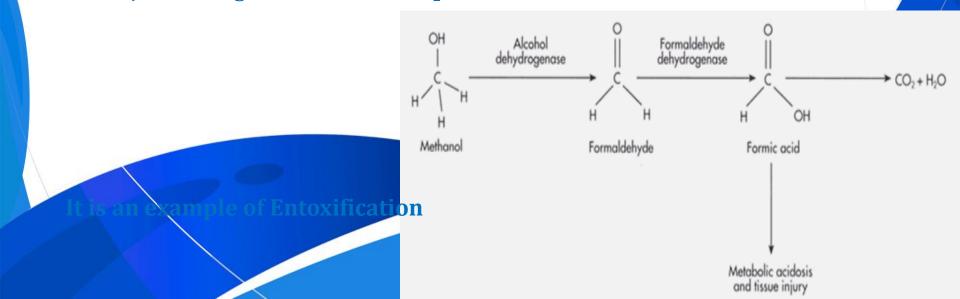
- A large number of foreign substances are destroyed by oxidation in the body.
- Examples-
- Oxidation of methyl group containing compounds

Methyl group- is oxidized **to acid** through formation of **alcohol** and **aldehyde**

$$CH_3 \rightarrow CH OH \rightarrow CHO \rightarrow COOH$$

A) Oxidation

Oxidation of Alcohols- Primary aliphatic and aromatic alcohols are oxidized to corresponding acids


Methanol → Formaldehyde → Formic acid

thanol → Acetaldehyde → Acetic acid

Benzaldehyde - Benzoic acie

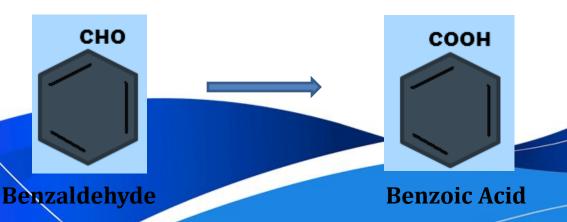
Methanol toxicity

- Methanol has a relatively low toxicity; metabolized in the liver.
- ☐ In the first step of degradation, methanol is transformed to formaldehyde via the enzyme alcohol dehydrogenase (ADH).
- □ Transformation of formaldehyde to formic acid via the enzyme aldehyde dehydrogenase is faster
- ☐ The metabolism of formic acid is very slow; thus, it often accumulates in the body, which results in metabolic acidosis.
- The major damage occurs to the optic nerve.

A) Oxidation

Oxidation of Aromatic Hydrocarbons

Aromatic hydrocarbons are oxidized to **phenolic** compounds, which can further be **conjugated** with **Glucuronic acid** or **Sulfuric acid** in phase 2 reactions so as to be excreted through urine.



Phase 1 reactions A) Oxidation

Oxidation of Aldehydes

Aldehydes are oxidized to corresponding **acid**. Acid thus formed is further conjugated in phase 2; e.g.

- ☐ **Benzoic acid** is conjugated with Glycine to form **Hippuric acid**.
- ☐ This reaction exclusively takes place in **liver**.
- Hippuric acid excretion test is undertaken to determine the **detoxification functions of liver.**

A) Oxidation

- Oxidation of Anilides
- Anilides are oxidized to corresponding phenols
- e.g.- Acetanilide is a constituent of analgesic drug. It is oxidized in the body to form p-Acetyl amino phenol.

Acetanilide → p-Acetyl -Amino phenol

Phase 1 reactions A) Oxidation

Oxidation of Amines

 Many primary aliphatic amines undergo oxidation to form the corresponding acids and nitrogen is converted to urea.

Benzyl amine → Benzoic acid + Urea

Aroma nes like Aniline is oxidized to corresponding

A) Oxidation

- **Oxidation of Sulphur containing compounds**
- The sulphur present in organic compounds is oxidized to Sulphate (SO_4^{-2})
- Oxidation of Drugs
- Meprobamate OH Meprobamate

richloracetic acid

A) Oxidation

Oxidation of certain compounds may result in the production of more toxic compounds (Entoxification). Therefore their formation is prevented.

For example-

Methanol \rightarrow Formic acid

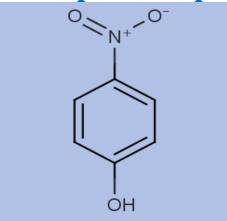
ed Alcohol -> Halogenated Acid

B) Reduction

Reduction does not occur extensively in human beings

Examples-

Reduction of Aldehydes

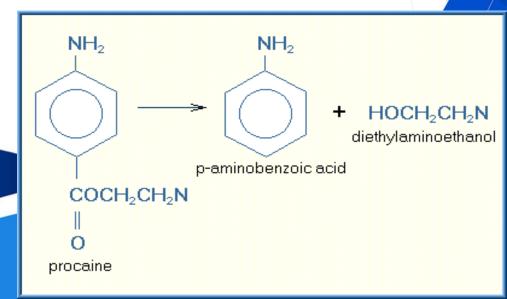

Trichloroethanol

anol is excreted after conjugation with D-

B) Reduction

- **Reduction of Nitro compounds**
- p- nitrobenzene → p-Amino benzene

p- nitro phenol → p-Aminophenol


p-nitropheno

C) Hydrolysis

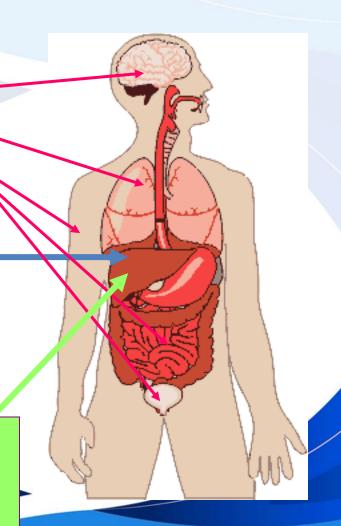
Certain therapeutic compounds undergo hydrolysis,

- Examples-
- Acetyl Salicylic acid → Acetic acid + Salicylic acid
- Atropine → Tropic acid + Tropine

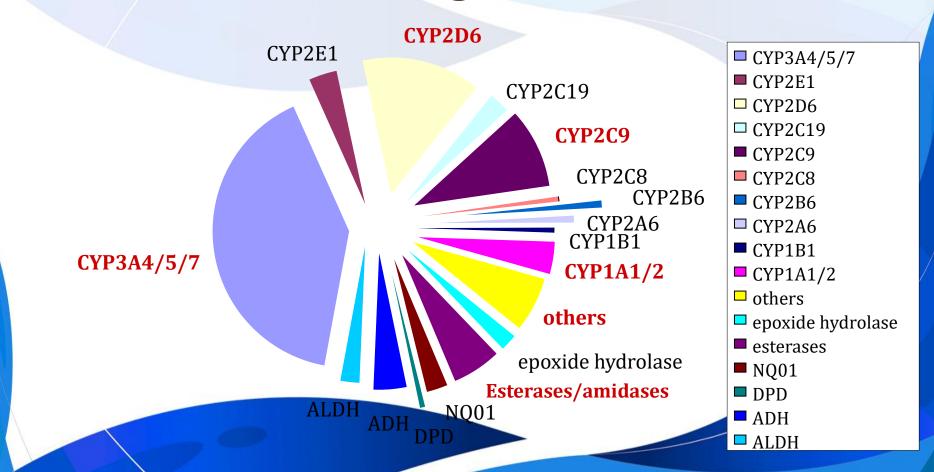
Digitalis → Sugar + Aglycone

Phase 1 reactions- Enzymes

- Mainly Catalyzed by members of a class of enzymes referred to as Monooxygenases, Mixed Function oxidases or Cytochrome P450s.
- **□** Other enzymes of significance are-
 - Aldehyde and alcohol dehydrogenase
 - Deaminases
 - Esterases
 - o Ami

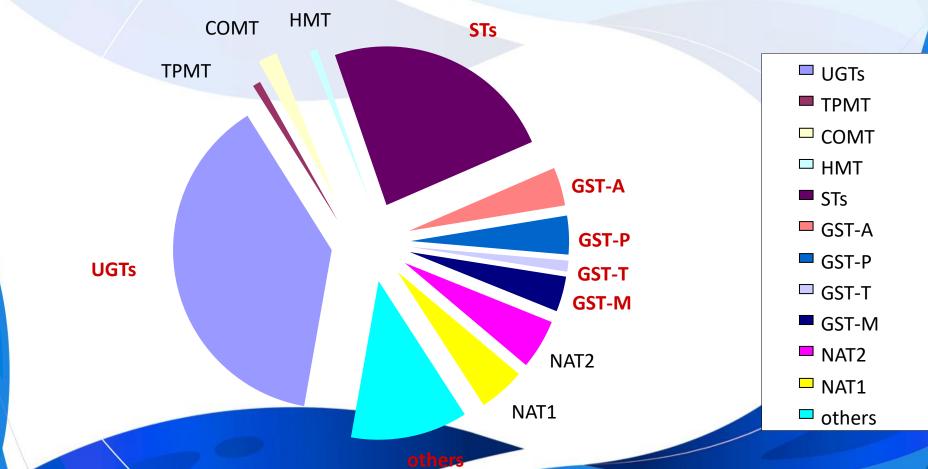

e hydrolases

Enzim yang berperan pada fase 1


Extrahepatic microsomal enzymes (oxidation, conjugation)

Hepatic microsomal enzymes (oxidation, conjugation)

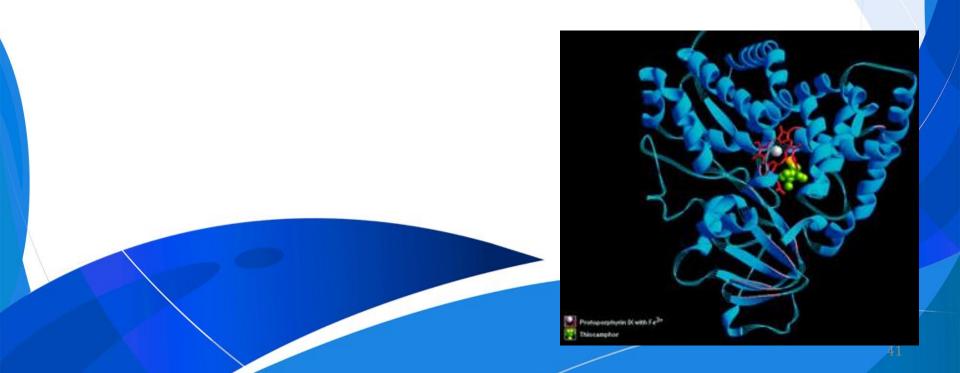
Hepatic non-microsomal enzymes (acetylation, sulfation, GSH, alcohol/aldehyde dehydrogenase, hydrolysis, ox/red)


Human Phase I Enzymes of Drug Metabolism

CYP: cytochrome P450, NQ01: NADPH:quinone oxidoreductase (DT diaphorase); DPD: dihydropyrimidine dehydrogenase; ADH: alcohol dehydrogenase; ALDH: aldehyde dehydrogenase

| Cyp: cytochrome P450, NQ01: NADPH:quinone oxidoreductase (DT diaphorase); DPD: dihydropyrimidine dehydrogenase; ALDH: aldehyde | Cyans and Relling, Science (1999)

Human Phase II Enzymes of Drug Metabolism


HMT: histamine methyltransferase; TPMT: thiopurine methyltransferase;

COMT: catechol O-methyltransferase; UCII: Uridine Glucuronosyl-S-Transferases;

ST: Sulfotransferase; GST: Glutathione-S-Transferases

Evans and Relling, Science (1999)

Microsomal Enzyme Cytochrome P450: A superstar of xenobiotic metabolism

Cytochrome P450 Enzyme system

☐ The reaction catalyzed by a **monooxygenase** (cytochrome P450) is as follows:

$$RH + O_2 + NADPH + H^+ \rightarrow R - OH + H_2O + NADP$$

- ☐ RH above can represent a very wide variety of xenobiotics, including **drugs** (>50%), **carcinogens**, **pesticides**, **petroleum products**, and **pollutants**
- In addition, **endogenous compounds**, such as certain steroid.

 Eicosar ty acids, and retinoids, are also substrates.
- The substrates are generally lipophilic and are rendered more hydronic whydroxylation.

Properties of Human Cytochrome P450s

- ☐ Involved in **phase I** of the metabolism of innumerable xenobiotics
- ☐ Involved in the metabolism of many **endogenous compounds**
- All are haemoproteins
- Exhibit broad substrate specificity, thus act on many compounds
- Extremely versatile catalysts, perhaps catalyze about 60 types of reactions
- Decree of the substrate and one into water

Properties of Human Cytochrome P450s (cont'd)

- Liver contains highest amounts, but found in most if not all tissues, including small intestine, brain, and lung
- Located in the smooth endoplasmic reticulum or in mitochondria (steroidogenic hormones)
- In some cases, their products **are mutagenic** or **carcinogenic**

Properties of Human Cytochrome P450s (cont'd)

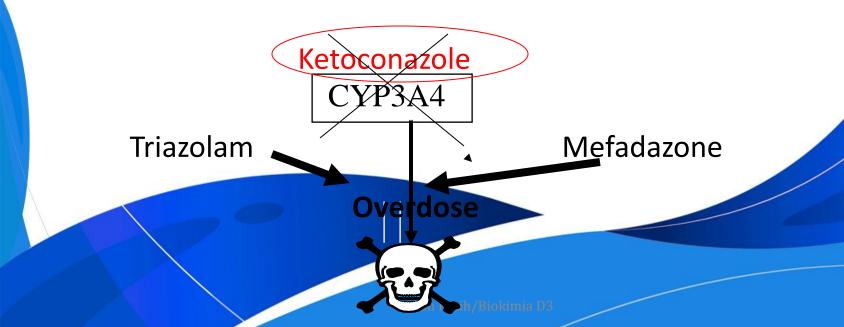
- ☐ 6 CYP specieses are available (minimum)
- Many are inducible, resulting in one cause of drug interactions
- Many are inhibited by various drugs or their metabolic products, providing another cause of drug interactions
- Some exhibit **genetic polymorphisms**, which can result to local drug metabolism

Alcohol modulates P450 activity

Alcohol - induced toxicity of acetaminophen (Tylenol)

- Acetaminophen in small amounts is metabolized by glucuronidation and sulfation.
- Larger ingestions result in production of a toxic metabolite Nacetyl-p-benzoquinoneimine (NAPQI) by P450.
 - The NAPQI is normally detoxified by glutathione.
- However, chronic alcoholism depletes glutathione, and also induces P450 to increase toxicity.
- Thus, previous chronic alcohol ingestion increases the risk for acetaminophen toxicity.

Smoking modulates P450 activity


- Polycyclic hydrocarbons in cigarette smoke induce the metabolism of CYP1A substrates as a result of CYP1A induction
- The average content of CYP1A in the liver biopsies from smokers (16.3 pmol/mg of protein) was significantly higher than that from nonsmokers (4.7)
- Theophylline, caffeine, fluvoxamine, clozapine, and olanzapine clearance is significantly increased in smokers compared with nonsmokers

Herbal supplements modulate P450 activity

- St. John's Wort (Hypericum perforatum) extracts, preparations that are used in the treatment of depression, inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4
- Ginseng (CYP1A1, 1A2, 1B1)-inhibition
- The Licorice Root derived Isoflavan Glabridin inhibits P450s 3A4, 2B6, and 2C9

Multiple drug interactions modulate P450 activity

A 63 year old man receiving medication for major depression showed he boarded a plane in Toronto to fly to London. On arrival he was unrousable. In his Carry-on bag he had Mefadazone (for depression), Ketoconazole (for fungal infection) and Triazolam (an antipsychotic also used for insomnia). All three of these drugs bind to CYP3A4. Ketoconazole inhibits CYP3A4 and caused the other two drugs to become overdosed during 6 hr flight (sitting still is a factor).

Non-CYP drug oxidations

- Monoamine Oxidase (MAO), Diamine Oxidase (DAO) MAO (mitochondrial) oxidatively deaminates endogenous substrates including neurotransmitters (dopamine, serotonin, norepinephrine, epinephrine); drugs designed to inhibit MAO used to affect balance of CNS neurotransmitters (L-DOPA)
- Alcohol & Aldehyde Dehydrogenase non-specific enzymes found in soluble fraction of liver; ethanol metabolism
 - **Xanthine Oxidase -** converts **hypoxanthine** to **xanthine**, and then to **uric acid**. Drug substrates include theophylline, 6-mercaptopurine. Allopurinol is substrate and inhibitor of xanthine oxidase; delays metabolism of other substrates; effective for treatment of gout.

PHASE 2 METABOLISM

A molecule endogenous to the body donates a portion of itself to the foreign molecule

$$D+ENDOX \longrightarrow DX+ENDO$$

ENDO = UDP glukuronat, sulfat, glutathion, metil, asetil, asam amino glisin, dll

Phase 2 - Conjugation

- ☐ Conjugation is a process by which the foreign molecules and their metabolites are coupled with a conjugating agent and are converted to soluble, non toxic derivatives which are easily excreted in urine
- ☐ Conjugation reactions can occur independently or can follow phase 1 (hydroxylation) reactions
- Conjugation takes place primarily in **liver** but can occur in **kidney** also
- After conjugation the products are generally rendered **non tox** but in certain conditions they are left **unchanged or** become toxic

Types of Phase 2 Reactions

- 1. Glucuronidation
- 2. Sulfation
- 3. Acetylation
- 4. Methylation
- 5. Conjugation with Amino acids
- 6. Conjugation with G-SH

1) Glucuronidation

Glucuronidation is the **most frequent** conjugation reaction.

- □ **UDP-glucuronic acid**, is the Glucuronyl donor, which is formed in the uronic acid pathway of Glucose metabolism
- Glucuronosyl transferases, present in both the endoplasmireticulum and cytosol, are the catalysts.
- The of the may be attached to oxygen, nitrogen, or substrates.

1) Glucuronidation

Compounds conjugated with Glucuronic acid are-

- 1) Bilirubin
- 2) Aromatic acids- Benzoic acid
- 3) Phenols, Secondary and Tertiary aliphatic alcohols
- 4) Antibiotics like Chloramphenicol
- Hormones- Thyroid hormone, derivatives of corticosteroids and sex hormone metabolites
- 6) 2-Acetylaminofluorene (a carcinogen)
- Z)
- B) Mep

Glucuronidation

2 NAD+

Glucuronidation of Bilirubin

1) UDP Glucose

UDP- G dehydrogenase

IDP Glucuronic acid

2) UDP Glucuronic acid + Bilirubin

UDP- Glucuronyl Transferase

2 NADH +2H+

Bilirubin Monoglucuronide +UDP

Glucuronidation

Glucuronidation of Bilirubin

Bilirubin Monoglucuronide + UDP Glucuronic acid

UDP- Glucuronyl Transferase

Bilirubin Diglucuronide + UDP

Most of the **bilirubin excreted** in the bile of mammals is in the form of **bilirubin diglucuronide**.

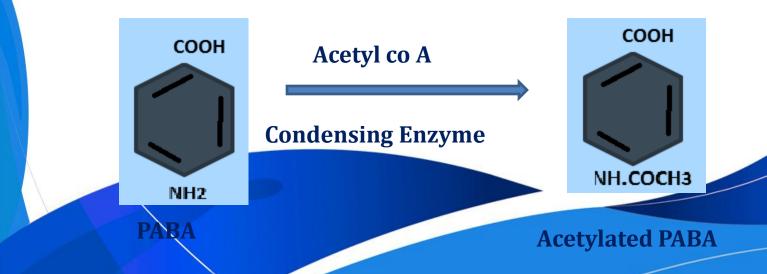
Bilirubin-UGT activity can be **induced** by a number of clinically useful dincluding Phenobarbital.

2) Sulfation

- □ The sulfate donor is adenosine 3'-phosphate-5'-phosphosulfate (PAPS) this compound is called "active sulfate"
- ☐ The enzyme is **sulfo transferase**
- Compounds which are conjugated with sulphate are as follows-
 - Phenols, Cresols, Indole
 - Steroids, Oestrogen and Androgens
 - Tyrosine to form Tyrosine-O- Sulphate, which is required for formation of Fibrinogen
 - o Glycosaminoglycans, glycolipids, and glycoproteins

2) Sulfation

Sulfotransferases are localized in the **cytosol** and transfer sulphar moiety mainly to OH group. The donor of sulphate is PAPS (Active sulphate) which is synthesized from 2 mol of ATP and one mo


3) Acetylation

- ☐ Acetylation is represented by
 - $X + Acetyl CoA \rightarrow Acetyl X + CoA$
- where X represents a xenobiotic.
- ☐ Acetyl-CoA (active acetate) is the acetyl donor.
- ☐ These reactions are catalyzed by **acetyltransferases** present in the **cytosol** of various tissues, particularly **liver**
- Polymorphic types of acetyltransferases exist, resulting in individuals who are classified as slow or fast acetylators, and influence the rate of clearance of drugs from blood.
- Slow a grow ors are more subject to certain toxic effects of drug because he drug persists longer in these individuals.

3) Acetylation

Compounds conjugated by Acetylation-

- Sulphanilamide
- ☐ PABA (Para Amino Benzoic Acid)
- Isoniazid

4) Methylation

- ☐ Methylation is limited in the body
- ☐ S- Adenosyl Methionine (Active Methionine) acts as a Methyl group donor
- ☐ Reactions are called **Transmethylation reactions**
- ☐ Enzymes catalyzing the reactions are **Methyl trans**

4) Methylation

Compounds conjugated by Methylation are-**☐** Nicotinamide CH3

Nicotinamide

□ p- Methyl Amino Azo benzene

p- Dimethyl Amino Azo Benzene (Hepatic Carcinogen)

O- Methylation of estrogen, norepinephrine, epinephrine ar metab

5) Conjugation with Amino acids

- 1) Conjugation with Glycine
- Benzoic acid + Glycine → Hippuric acid
- Nicotinamide + Glycine → Nicotinuric Acid
- Cholic and deoxy Cholic acid are conjugated to form **Glyco** cholic acid and Clycodeoxy cholic acid

5) Conjugation with Amino acids

- 2) Conjugation with Cysteine
- A few aromatic compounds are conjugated with Cysteine in the presence of Acetic acid to form Mercapturic acid
- ☐ Bromo Benzene + Cysteine + Acetic acid

Bromo phenyl Mercapturic acid

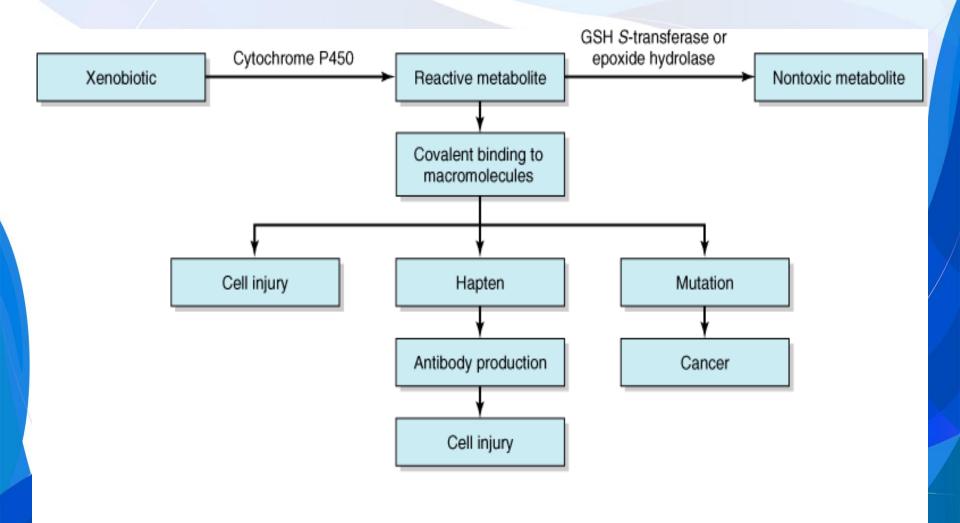
Cysteine + Acetic Acid

5) Conjugation with Amino acids

- 3) Conjugation with Glutamine
- Phenyl Acetic acid + Glutamine
 - **Phenyl Acetyl Glutamine**
 - This reaction is important in **patients of Phenyl ketonuria**even that imparts a mousy oder to the un

6) Conjugation with Glutathione

- ☐ Glutathione (Y-glutamyl-cysteinylglycine) is a **tripeptide** consisting of **glutamic acid**, **cysteine**, and **glycine**
- ☐ Glutathione is commonly **abbreviated GSH** (because of the sulfhydryl group of its cysteine, which is the business part of the molecule).
 - A number of potentially toxic electrophilic xenobiotics (such as certain carcinogens) are conjugated to the nucleophilic GSH in reactions that can be represented as follows:


 $R + GSH \rightarrow R - S - G$

where R electrophilic xenobiotic

6) Conjugation with Glutathione

- ☐ The enzymes catalyzing these reactions are called **glutathione S-transferases**
- □ A variety of glutathione S-transferases are present in human tissue. They exhibit **different substrate specificities** and can be separated by electrophoretic and other techniques.
- □ If the potentially toxic xenobiotics were not conjugated to GSH, they would be free to combine covalently with DNA, RNA, or cell protein a could thus lead to serious **cell damage**.
- □GSH is therefore an important **defense mechanism** against compositions such as some drugs and carcinogens.

Effects of Xenobiotics

Effects of Xenobiotics

- □ Reactions of activated species of chemical carcinogens with **DNA** are of great importance in **chemical carcinogenesis**
- Some chemicals (eg, benzo[α]pyrene) require **activation by monooxygenases in the endoplasmic reticulum** to become carcinogenic (they are thus called **indirect carcinogens**).
- ☐ The products of the action of certain monooxygenases on some procarcinogen substrates are **epoxides**.
- Epoxides are highly reactive and mutagenic or carcinogenic or both.
- Epoxide hydrolase—like cytochrome P450 acts on these comps and enverting them into much less reactive dilaydrodiols

Summary

- ■Xenobiotics are **chemical compounds foreign** to **the body**
- Xenobiotics are **metabolized in two phases**. The major reaction of **phase 1 is hydroxylation catalyzed by a variety of monooxygenases,** also known as the cytochrome P450s. **In phase 2**, the hydroxylated species are **conjugated** with a variety of hydrophilic compounds such as glucuronic acid, sulfate, or glutathione. The combined operation of these two phases renders lipophilic compounds into water-soluble compounds that can be eliminated from the body.
- Nenobiotics can produce a **variety of biologic effects**, including pharmacologic responses, toxicity, immunologic reactions, and cancer

TERIMAKASIH

KAMPUS PROGRAM DIPLOMA (D3), SARJANA (S1) & PROFESI:

Srengseng Sawah, Jagakarsa Jakarta Selatan Telp. 021 - 7270086 ext. 123, 126, 139 / 7270130 / 7874344 Fax. 021 7271868 / 78880305 Email. humas@univpancasila.ac.id

SEKOLAH PASCASARJANA (S2) & (S3):
Jalan Borobudur No.7. Jakarta Pusat

www.univpancasila.ac.id