

MATA KULIAH KIMIA

REAKSI KIMIA DALAM AIR

Dosen Pengampu:

Dr. apt. Liliek Nurhidayati, M.Si.

Program Studi Teknik Industri

Fakultas Teknik Universitas Pancasila Semester

Gasal 2024/2025

SIFAT UMUM LARUTAN DALAM AIR

- Larutan adalah campuran homogen dari dua atau lebih zat.
- Zat dengan jumlah lebih sedikit disebut solut, yang jumlahnya lebih banyak disebut pelarut
- Berdasarkan kemampuannya menghantarkan arus Listrik, solut yang terlarut dalam air dibagi dua: elektrolit dan non elektrolit

Hidrasi: Proses di mana ion dikelilingi oleh molekul air

Ionisasi:
$$H_2O \longrightarrow H^+(aq) + Cl(aq)$$
 $CH_3COOH(aq) \longrightarrow CH_3COO^-(aq) + H^+(aq)$

REAKSI KIMIA DENGAN MEDIA AIR

1. Reaksi Molekul

$$NaCl_{(aq)} + AgNO_{3(aq)} \rightarrow AgCl_{(s)} + NaNO_{3(aq)}$$

Reaksi ini dinamakan metatesis atau perubahan rangkap dimana terjadi pertukaran tempat dari anion dan kation.

Persamaannya disebut persamaan molekuler.

2. Reaksi Ion

$$Na^{+} + Cl^{-} + Ag^{+} + NO_{3}^{-} \rightarrow AgCl_{(s)} + Na^{+} + NO_{3}^{-}$$

Persamaannya disebut persamaan ionik.

Zat padat dalam larutan (s) atau endapan.

Ion-ion yang tidak mengalami perubahan selama reaksi disebut ion-ion pemirsa (ion pendamping, spectator ion).

Hasil akhir: $Ag^+ + CI^- \rightarrow AgCI_{(s)}$

Tiga tipe reaksi utama dalam kimia dan sistem biologi:

- a. Pengendapan
- b. Oksidasi-reduksi
- c. Asam-basa (melibatkan transfer H⁺ dari asam ke basa)

a. Reaksi Pengendapan

- Reaksi yang menghasilkan produk yang tidak larut (presipitat)
- Presipitat adalah padatan tidak larut yang terpisah dari larutan.

$$Pb(NO_3)_2(aq) + 2 KI(aq)$$
 \longrightarrow $PbI_2(s) + 2 KNO_3(aq)$

Kelarutan:

Merupakan jumlah maksimum solut yang dapat larut dalam sejumlah tertentu pelarut pada suhu tertentu

Reaksi metatesis = reaksi pertukaran ganda adalah reaksi yang melibatkan pertukaran bagian antara dua senyawa

Ada tiga gaya pendukung dalam reaksi metatesis:

- 1. Reaksi pembentukan endapan
- 2. Reaksi pembentukan elektrolit lemah
- 3. Reaksi pembentukan gas

1. REAKSI PEMBENTUKAN ENDAPAN

- ► Bergantung pada konsentrasi ion-ion yang membentuk garam tersebut
- ► Garam dikatakan tidak larut bila endapan tetap terbentuk walaupun konsentrasi ion-ion yang membentuk garam tersebut sangat kecil
- ► Untuk memperkirakan jalannya reaksi metatesis digunakan aturan kelarutan

Aturan Kelarutan zat

Semua garam dari logam alkali dan amonia (NH_4^{\dagger}) : larut Semua garam nitrat (NO_3^{\dagger}) , klorat (CIO_3^{\dagger}) , perklorat (CIO_4^{\dagger}) dan

asetat $(C_2H_3O_2^-)$: larut

Semua garam klorida, bromida dan iodida larut kecuali dari Ag⁺, Pb²⁺ dan Hg₂²⁺

Semua sulfat larut kecuali dari Ba²⁺, Sr²⁺ Hg²⁺ dan Pb²⁺ CaSO₄ dan Ag₂SO₄ sedikit larut.

Aturan kelarutan zat (lanjutan)

- Semua oksida logam tak larut kecuali oksida logam alkali, Ca²⁺, Ba²⁺, Sr²⁺
- Oksida logam adalah anhidrida basa yang bila bereaksi dengan air akan memberikan ion OH⁻ CaO + H₂O → Ca ²⁺ + 2 OH⁻
- Semua hidroksida tak larut kecuali hidroksida dari logam alkali, Ca²⁺, Ba²⁺, Sr²⁺. Ca(OH)₂ sedikit larut
- Semua karbonat (CO₃²⁻),fosfat (PO₄³⁻), sulfida (S²⁻) dan sulfit (SO₃²⁻) tak larut kecuali dari ion NH₄⁺ dan logam alkali.

2. REAKSI PEMBENTUKAN ELEKTROLIT LEMAH

Elektrolit lemah -> hanya sebagian kecil terdisosiasi (terionisasi). Lebih banyak berada dalam bentuk molekul daripada bentuk ion.

Reaksi molekuler

$$HC_2H_3O_2$$
 (aq) + NaOH (aq) \rightarrow NaC₂H₃O₂ (aq) + H₂O

Persamaan ionik

$$HC_2H_3O_{2(aq)}+Na^+_{(aq)}+OH^-_{(aq)}\rightarrow Na^+_{(aq)}+C_2H_3O_2^-_{(aq)}+H_2O$$

Hasil akhir

$$HC_2H_3O_2_{(aq)} + OH^-_{(aq)} \rightarrow C_2H_3O_2^-_{(aq)} + H_2O$$

H₂O merupakan elektrolit yang lemah sekali → pembentukannya dapat menyebabkan oksida-oksida yang tidak larut menjadi larut dalam asam dan asam lemah untuk bereaksi dengan basa

Oksida besi (III) larut dalam asam kuat (HCI)

Reaksi molekul :

$$Fe_2O_{3(s)} + 6HCI_{(aq)} \rightarrow 2FeCI_{3(aq)} + 3H_2O$$

Persamaan ion :

$$Fe_2O_{3(s)} + 6H^+_{(aq)} + 6CI^-_{(aq)} \rightarrow 2Fe^{3+}_{(aq)} + 6CI^-_{(aq)} + 3H_2O$$

Hasil akhir:

$$Fe_2O_{3(s)} + 6H^+_{(aq)} \rightarrow 2Fe^{3+}_{(aq)} + 3H_2O$$

Beberapa elektrolit lemah

Senyawa

Reaksi Disosiasi

Air
$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

Asam asetat
$$HC_2H_3O_2 + H_2O \rightarrow H_3O^+ + C_2H_3O_2$$

Amonia
$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

Hidrogen sianida
$$HCN + H_2O \rightarrow H_3O^+ + CN^-$$

3. REAKSI PEMBENTUKAN GAS

Molekul zat yang terbentuk dalam suatu reaksi metatesis dapat berupa solut yang tak larut, gas atau zat yang mengurai dan akan menguap sebagai gas.

$$HCI_{(aq)} + Na_2S_{(aq)} \rightarrow H_2S_{(g)} + NaCI_{(aq)}$$

H₂S elektrolit lemah, gas dengan kelarutan dalam air kecil, sehingga akan menguap.

Reaksi molekul:

$$2HCI_{(aq)} + Na_2S_{(aq)} \rightarrow H_2S_{(g)} + 2NaCI_{(aq)}$$

Persamaan ion:

$$2H^{+}_{(aq)} + 2CI^{-}_{(aq)} + 2Na^{+}_{(aq)} + S^{2-}_{(aq)} \rightarrow H_{2}S_{(g)} + 2Na^{+}_{(aq)} + 2CI^{-}_{(aq)}$$

Hasil akhir:

$$2H^{+}_{(aq)} + S^{2-}_{(aq)} \rightarrow H_2S_{(g)}$$

$$HCI_{(aq)} + Na_2CO_3_{(aq)}$$

Reaksi molekul:

$$2HCI_{(aq)} + Na_2CO_3_{(aq)} \rightarrow H_2CO_3_{(aq)} + 2NaCI_{(aq)}$$

Persamaan ion:

$$2H^{+}_{(aq)} + 2CI^{-}_{(aq)} + 2Na^{+}_{(aq)} + CO_{3}^{2-}_{(aq)} \rightarrow H_{2}CO_{3(aq)} + 2Na^{+}_{(aq)} + 2CI^{-}_{(aq)}$$

Hasil akhir:

$$2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow H_{2}CO_{3}(aq)$$

H₂CO₃ pada konsentrasi tinggi tidak stabil, mudah terurai menjadi CO₂ (tidak larut dalam air, menguap sebagai gas) dan H₂O

$$H_2CO_{3(aq)} \rightarrow H_2O + CO_{2(g)}$$

Hasil akhirnya: $2H^{+}(aq)$ + $CO_3^{2-}(aq)$ $\rightarrow H_2O + CO_2(g)$

Gas-gas yang terbentuk pada reaksi metatesis

CO₂ Na₂CO₃ +2HCl
$$\rightarrow$$
 H₂CO₃ + 2NaCl
H₂CO₃ \rightarrow H₂O + CO_{2 (g)}
Hasil akhir : CO₃²⁻(aq) + 2H⁺ \rightarrow H₂O + CO_{2 (g)}

SO₂ Na₂SO₃ + 2HCl
$$\rightarrow$$
 H₂SO₃ + 2NaCl
H₂SO₃ \rightarrow H₂O + SO_{2(g)}
Hasil akhir : SO₃²⁻ + 2H⁺ \rightarrow H₂O + SO_{2(g)}

NH₃ NH₄CI + NaOH
$$\rightarrow$$
 NH_{3(g)} + H₂O + NaCl
Hasil akhir : NH₄⁺ + OH⁻ \rightarrow NH_{3(g)} + H₂O

$$H_2S$$
 $Na_2S + 2HCI \rightarrow H_2S_{(g)} + 2NaCI$
Hasil akhir : $S^{2-} + 2H^+ \rightarrow H_2S_{(g)}$

NO NaNO₂ + HCI
$$\rightarrow$$
 HNO₂ + NaCl
NO₂ 2HNO₂ \rightarrow H₂O + NO_{2(g)} + NO_(g)
Hasil akhir: $2NO_2^- + 2H^+ \rightarrow H_2O + NO_{2(g)} + NO_{(g)}$

Contoh: $2NH_4NO_3+Ba(OH)_2 \rightarrow 2NH_4OH + Ba(NO_3)_2$

Reaksi molekul:

$$2NH_4NO_3+Ba(OH)_2 \rightarrow 2NH_3 + 2H_2O + Ba(NO_3)_2$$

Reaksi ion:

$$2NH_4^+_{(aq)} + 2NO_3^-_{(aq)} + Ba^{2+}_{(aq)} + 2OH^-_{(aq)} \rightarrow 2NH_3_{(g)} + 2H_2O$$
 $+ Ba^{2+}_{(aq)} + 2NO_3^-_{(aq)}$

Hasil akhir:

$$NH_4^+(aq) + OH^-(aq) \rightarrow NH_3(g) + H_2O$$

REAKSI OKSIDASI-REDUKSI

- Oksidasi → hilangnya e⁻ dari suatu zat;
 Reduksi → perolehan e⁻ oleh suatu zat
- 2. Reaksi yang melibatkan oksidasi dan reduksi disebut reaksi oksidasi-reduksi (reaksi redoks)
- 3. Pada setiap reaksi redoks, oksidasi maupun reduksi berlangsung secara serempak
- 4. Jumlah total elektron yang diperoleh tepat sama dengan jumlah total elektron yang dilepaskan

oksidasi : Mg
$$\rightarrow$$
 Mg²⁺ + 2 e⁻ x 2
reduksi : $O_2 + 4e^- \rightarrow 2 O^{2-}$
2 Mg + $O_2 \rightarrow 2$ MgO

5. Zat pengoksidasi (oksidator) adalah zat yang mengambil e⁻ dari zat yang dioksidasi sehingga terjadi oksidasi → dengan demikian akan tereduksi

Zat pereduksi (reduktor) adalah zat yang memberikan e⁻ kepada zat yang direduksi sehingga terjadi reduksi → dengan demikian akan teroksidasi

Bilangan oksidasi:

Bilangan oksidasi adalah

bilangan (+ atau -) yang diberikan kepada atom-atom dalam suatu senyawa sehingga perubahan yang berlangsung dalam reaksi redoks dapat diikuti

Oksidasi: kenaikan bilangan oksidasi

Reduksi: penurunan bilangan oksidasi

Aturan untuk menentukan bilangan oksidasi:

- 1. Bil.oks setiap unsur dalam bentuk unsur adalah nol \rightarrow Ne, H₂, Br₂, N₂,
- 2. Bil.oks setiap ion mono atom sama dengan muatan ion itu Contoh: Na⁺: bil.oks +1; S²⁻: bil.oks -2
- 3. Jumlah bil.oks semua atom dalam senyawa = 0; utk ion yg mgd atom banyak maka jumlah bil.oks harus sama dg muatan yg ada pada ion
- 4. Bilangan oksidasi fluor -1; hidrogen +1; oksigen -2

Contoh:
$$Fe_2(SO_4)_3$$
 $Cr_2O_7^{2-}$
 $Fe = 2 \times (+3) = +6$ $Cr = 2 \times (X) = 2 \times X$
 $S = 3 \times (X) = 3 \times X$ $O = 7 \times (-2) = -14$
 $O = 12 \times (-2) = -24$ Jumlah = 0
 $3X = +18 \rightarrow X = +6$ $2X = +12 \rightarrow X = +6$
Bil.oks $S = +6$ Bil.oks $Cr = +6$

Fe₂(SO₄)₃
$$\rightarrow$$
 2Fe³⁺ + 3SO₄²⁻

(2 x bil oks Fe) + (3 x bil oks S) + (12 x bil oks O) = 0

(2 x +3) + (3 x bil oks S) + (12 x -2) = 0

+6 + (3 x bil oks S) + -24 = 0

(3 x bil oks S) = +18

bil oks S = +6

$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} \rightarrow \operatorname{K}_{2}\operatorname{CrO}_{7}$$

 $(2 ext{ x bil oks Cr}) + (7 ext{ x bil oks O}) = -2$ $(2 ext{ x bil oks Cr}) + (7 ext{ x -2}) = -2$ $(2 ext{ x bil oks Cr}) = +12$ bil oks Cr = +6

Membuat setimbang persamaan reaksi dengan ion-elektron

- 1. Dasarnya adalah pemisahan dan penyatuan.
- 2. Persamaannya dibagi 2 bagian (reaksi setengah) → disetimbangkan secara terpisah → disatukan kembali → hasil akhir kesetimbangan ionnya Dalam menggunakan cara ion-elektron, mulai menulis kerangka persamaan reaksi yg menunjukkan zat-zat yg benarbenar ikut dalam reaksi, semua ion pemirsa dihilangkan

Bila kita menggunakan cara ion-elektron → yg perlu diketahui apakah reaksi terjadi dalam <u>suasana asam</u> atau <u>basa</u>

13 September 2025

Reaksi Redoks dalam larutan suasana asam

Langkah-langkah pada cara ion-elektron untuk larutan dalam suasana asam sbb:

- 1. Bagi kerangka persamaan dalam 2 reaksi setengah
- 2. Setimbangkan atom-atom yg ada selain oksigen dan hidrogen
- 3. Setimbangkan oksigen dgn menambahkan H₂O pada sisi yang memerlukan atom oksigen
- 4. Setimbangkan hidrogen dgn menambahkan ion H[†] pada sisi yang memerlukan hidrogen
- 5. Setimbangkan muatan pd tiap reaksi dgn menambahkan elektron
- 6. Buat elektron yang diterima = elektron yang diberikan
- 7. Jumlahkan kedua reaksi setengah
- 8. Hilangkan segala sesuatu yg dikedua pihak sama

13 September 2025 20

Contoh: Setimbangkan reaksi $Cl^{-} + MnO_4^{-} \rightarrow Cl_2 + Mn^{2+}$

```
MnO_4 \rightarrow Mn^{2+}
1. Cl^{-} \rightarrow Cl_{2}
   -1 0 +7 (4x-2)
2. 2Cl^{-} \rightarrow Cl_2 MnO_4^{-} \rightarrow Mn^{2+}
3. 2Cl^{-} \rightarrow Cl_2 MnO_4^{-} \rightarrow Mn^{2+} + 4H_2O
4. 2Cl^{-} \rightarrow Cl_{2} 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O
• 2x(-1) +8 + -1 = +7
5. \frac{2Cl}{} \rightarrow Cl_2 + \frac{2e}{}
                                                     x 5
   5e^{-} + 8H^{+} + MnO_{4}^{-} \rightarrow Mn^{2+} + 4H_{2}O \times 2
6. 10Cl^{-} \rightarrow 5Cl_2 + 10e^{-}
   10e^{-} + 16H^{+} + 2MnO_{4}^{-} \rightarrow 2Mn^{2+} + 8H_{2}O
7. 10Cl^{-} + 16H^{+} + 2MnO_{4}^{-} \rightarrow 5Cl_{2} + 2Mn^{2+} + 8H_{2}O_{4}^{-}
   (10 \times -1) (16 \times +1) (2 \times -1) \rightarrow (5 \times 0) (2 \times +2) (8 \times 0)
    (-10) + (+16) + (-2) \rightarrow +4
```

```
MnO_4^- = (1 \text{ x biloks Mn}) + (4 \text{ x bil oks O}) = -1
bil oks Mn + (4 x -2) = -1
bil oks Mn = -1 + +8
bil oks Mn = +7
```

Reaksi oksidasi-reduksi yang umum

- 1. Reaksi penggabungan
- 2. Reaksi Dekomposisi
- 3. Reaksi pembakaran
- 4. Reaksi pemindahan
 - a. Pemindahan hidrogen
 - b. Pemindahan logam
 - c. Pemindahan halogen

13 September 2025 22

Reaksi oksidasi-reduksi yang umum

1. Reaksi penggabungan

$$S(s) + O_2(g) \longrightarrow SO_2(g)$$

$$0 \qquad 0 \qquad +2 \qquad -3$$

$$3Mg(s) + N_2(g) \longrightarrow Mg_3N_2(s)$$

2. Reaksi Dekomposisi

$$\begin{array}{cccc}
+2 & 0 & 0 \\
2 \text{HgO}(s) & \longrightarrow 2 \text{Hg}(l) + \text{O}_2(g) \\
+5 & -2 & -1 & 0 \\
2 \text{KClO}_3(s) & \longrightarrow 2 \text{KCl}(s) + 3 \text{O}_2(g) \\
+1 & -1 & 0 & 0 \\
2 \text{NaH}(s) & \longrightarrow 2 \text{Na}(s) + \text{H}_2(g)
\end{array}$$

3. Reaksi pembakaran

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$$

- 4. Reaksi pemindahan
 - a. Pemindahan hidrogen
 - b. Pemindahan logam
 - c. Pemindahan halogen

Setimbangkan reaksi Cr₂O₇²⁻ + H₂S → Cr³⁺ + S

1.
$$Cr_2O_7^{2-} \rightarrow Cr^{3+}$$

$$H_2S \rightarrow S$$

2.
$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$$

$$H_2S \rightarrow S$$

3.
$$Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O$$
 $H_2S \rightarrow S$

$$H_2S \rightarrow S$$

4.
$$14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O$$

 $H_{2}S \rightarrow S + 2H^{+}$

5.
$$6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O \times 1$$

 $H_{2}S \rightarrow S + 2H^{+} + 2e^{-} \times 3$

6.
$$6e^{-} + 14H^{+} + Cr_{2}O_{7}^{2-} \rightarrow 2Cr^{3+} + 7H_{2}O$$

 $3H_{2}S \rightarrow 3S + 6H^{+} + 6e^{-}$

7.
$$14H^{+} + Cr_{2}O_{7}^{2-} + 3H_{2}S \rightarrow 2Cr^{3+} + 7H_{2}O + 3S + 6H^{+}$$

8.
$$8H^{+} + Cr_{2}O_{7}^{2-} + 3H_{2}S \rightarrow 2Cr^{3+} + 7H_{2}O + 3S$$

Stoikiometri larutan

Analisis gravimetri:

Adalah Teknik analisis berdasarkan pada pengukuran massa

$$AgNO_3(aq) + NaCl(aq) \longrightarrow NaNO_3(aq) + AgCl(s)$$

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

AgCl yang dihasilkan ditimbang

REAKSI ASAM_BASA

Sifat umum asam dan basa

Asam:

- Memiliki rasa asam
- Menyebabkan perubahan warna pada bahan tertentu missal memerahkan kertas lakmus biru
- Bereaksi dengan logam tertentu (Zn, Mg, Fe) menghasilkan gas hidrogen

$$2 \text{ HCl } (aq) + \text{ Mg(s)} \longrightarrow \text{MgCl}_2(aq) + \text{H}_2(g)$$

 Bereaksi dengan karbonat dan bikarbonat menghasilkan gas karbondioksida

$$2 \text{ HCl } (aq) + \text{CaCO}_3(s) \longrightarrow \text{CaCl}_2 (aq)$$

$$\text{HCl } (aq) + \text{NaHCO}_3(s) \longrightarrow \text{NaCl } (aq) + \text{H}_2\text{O} + \text{CO}_2(g)$$

- Dalam media air menghantarkan arus listrik

Basa

- rasa pahit
- memberi kesan licin
- Mengubah warna bahan tertentu (membirukan lakmus merah)
- Dalam media air menghantarkan arus listrik

TEORI ASAM -BASA

Arrhenius

Asam adalah senyawa yang bila terionisasi di dalam air menghasilkan H₃O⁺ (ion hidronium)

Basa adalah senyawa yang bila terionisasi di dalam air menghasilkan OH⁻

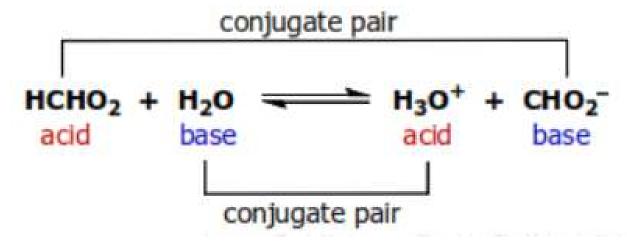
Reaksi netralisasi:

Reaksi antara asam dengan basa menghasilkan air dan garam

Ex.
$$HCl(aq) + NaOH(aq) \rightarrow H_2O + NaCl(aq)$$

 $H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq)$
 $\rightarrow 2H_2O + Cl^-(aq) + Na^+(aq)$

J.N Bronsted, menyatakan bahwa asam adalah senyawa yang dapat memberikan (donor) proton (H+) dalam pelarut, sedangkan basa adalah senyawa yang dapat menerima (aseptor) proton.


```
HCl(aq) + H₂O(l) → H₃O<sup>+</sup>(aq) + Cl<sup>-</sup>(aq)

asam monoprotik : HCl, HNO₃
asam diprotik : H₂SO₄
asam triprotik: H₃PO₄
HCl = asam; krn mendonorkan H<sup>+</sup>
Air = basa; krn menerima H<sup>+</sup>
Pasangan asam-basa konjugasi
- Spesies yang berbeda karena H<sup>+</sup>
```

H₃O⁺ adalah asam konjugat dari H₂O Ci⁻ adalah basa konjugat dari HCl

Asam formiat (HCHO₂) adalah basa lemah

$$HCHO_2(aq) + H_2O \longrightarrow CHO_2^-(aq) + H_3O^+(aq)$$

Pasangan konjugasi

conjugate base	conjugate acid
CI-	HCI
NH ₃	NH ₄ +
C ₂ H ₃ O ₂ -	HC ₂ H ₃ O ₂
CN-	HCN
F-	HF

Amfoter

- bisa bersifat asam atau basa

Contoh ion hidrogen karbonat

Asam:

$$HCO_3^-(aq) + OH^-(aq) \rightarrow CO_3^{2-}(aq) + H_2O(\ell)$$

Basa:

$$HCO_3^-(aq) + H_3O^+(aq) \rightarrow H_2CO_3(aq) + H_2O(\ell)$$

 $\rightarrow 2H_2O(\ell) + CO_2(g)$

Klasifikasi

Asam kuat: terionisasi sempurna dalam air Contoh HCl dan HNO₃

Asam lemah: Terionisasi kurang sempurna Contoh CH₃COOH dan CHOOH

Basa kuat: terionisasi sempurna dalam air

Contoh: Ion Oksida dan OH-

Basa lemah: terionisasi tidak sempurna

Contoh: NH₃ dan NH₂CH₃

Tetapan ionisasi

Disosiasi elektrolitik

AB
$$\underbrace{\begin{array}{c} 1. \text{ disosiasi} \\ 2. \text{ asosiasi} \end{array}}_{\text{A}^{+}} \text{A}^{+} + \text{B}^{-}$$

Derajat ionisasi

$$\alpha = \frac{Banyaknya \ molekul \ yang \ terionisasi}{Banyaknya \ molekul \ mula-mula}$$

INDIKATOR ASAM - BASA

Adalah Asam atau basa lemah dengan perbedaan warna didalam bentuk molekul daripada bentuk ion.

Dimaksudkan untuk mempermudah pengamatan titik akhir titrasi, **disebut** *indikator visual*

$$Ka = \frac{[H^{+}][In^{-}]}{[HIn]}$$
 $[H^{+}] = Ka\frac{[HIn]}{[In]}$ $pH = pKa - log\frac{[HIn]}{[In]}$

Warna 1 atau warna 2 kelihatan bila perbandingan [HIn] dengan [In -] ≥ 10

Bila [Hln] = [ln·] warna yang nampak campuran warna 1 dengan warna 2.

pH = pKa warna indikator pada titik akhir titrasi

Reaksi Kimia Netralisasi

Asam kuat dengan basa kuat:

Karbonat dan asam karbonat dengan HCI

$$CO_3^{-2}$$
 + H⁺ \xrightarrow{pp} HCO₃⁻ b.e. = 1
HCO₃⁻ + H⁺ \xrightarrow{mm} H₂CO₃ b.e. = 1
 CO_3^{-2} + 2H⁺ \xrightarrow{mm} H₂CO₃ b.e. = 1/2

Titik ekivalen adalah titik pada saat asam dan basa sudah bereaksi sempurna

Tuliskan persamaan ion untuk reaksi-reaksi berikut:

- a. $Pb(NO_3)_2 + (NH_4)_2SO_4 \rightarrow PbSO_4 + 2NH_4NO_3$
- b. NaBr + AgNO₃ \rightarrow AgBr + NaNO₃
- c. $H_2S + Cu(NO_3)_2 \rightarrow HNO_3 + CuS$
- d. $Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 + NaCl$

Tuliskan persamaan reaksi molekuler, ionik dan hasil akhir dari :

- a. AgNO₃ + KI
- b. $Na_2C_2O_4 + HCI$
- c. $Ba(NO_3)_2 + H_2SO_4$
- d. $Pb(NO_3)_2 + H_2SO_4$

Tuliskan reaksi molekuler dan reaksi ionik serta hasil akhir dari :

a.
$$Cr_2(CO_3)_3 + HNO_3$$

b.
$$MgCl_2 + Ba(OH)_2$$

c.
$$Zn(NO_3)_2 + Na_2S$$

d.
$$Ag_2CO_3 + HNO_3$$

e.
$$Hg_2(NO_3)_2 + NaCl$$