

Kimia Organik

Dosen Pengampu:

Dr. apt. Liliek Nurhidayati, M.Si.

Program Studi Teknik Industri

Fakultas Teknik Universitas Pancasila Semester

Gasal 2025/2026

Pendahuluan

Tahun 1850 definisi senyawa organik:

- senyawa yang berasal dari benda hidup.
- \pm tahun 1900 senyawa organik dapat disintesis di laboratorium \rightarrow tak ada hubungan dengan benda hidup

Definisi senyawa organik:

Senyawa yang mengandung atom karbon (atom C), meskipun tidak semua senyawa yang mengandung atom C termasuk senyawa organic (misal CO₂, NaCO₃, KCN adalah senyawa anorganik).

Selain atom C, unsur lain yang umum terdapat dalam senyawa organik : H, O, N, P, S, dan Halogen.

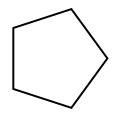
Ikatan antara unsur-unsur pada senyawa organik:

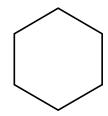
Atom C dengan atom C yang lain atau atom C dengan atom bukan C dihubungkan oleh ikatan kovalen.

Ikatan kovalen terbentuk bila 2 elektron berpasangan.

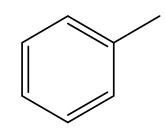
(1 elektron milik atom yang satu, elektron milik atom yang lain

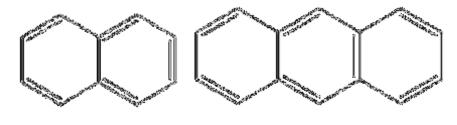
A. KLASIFIKASI SENYAWA ORGANIK


- I. SENYAWA ALIFATIK
- 1. Asiklik (rantai terbuka)


CH₃CH₂CH₂CH₂CH₃ atau

2. Siklik / cincin / rantai tertutup





II. SENYAWA AROMATIK

Benzena

Benzena tersubstitusi

Polisiklik

Heterosiklik

Klasifikasi senyawa organik dibedakan berdasarkan kandungan gugus fungsi. Gugus fungsi adalah gugusan atom-atom yang menentukan sifat kimia dari rantai induknya.

Semua senyawa organik diturunkan dari hidrokarbon (senyawa yang tersusun oleh atom karbon dan hidrogen.)

SENYAWA ALIFATIK

- 1. Senyawa tanpa gugus fungsi
 - Golongan Alkana
- 2. Senyawa dengan gugus fungsi

Golongan senyawa	Gugus fungsi	
- Alkena	Ikatan Rangkap dua	- C = C
- Alkuna	Ikatan Rangkap tiga	- C ≡ C
- Alkohol	Gugus Hidroksil	- OH
Halo Alkana (Alkil Halida)	Gugus Halogen	- X
- Amina	Gugus Amin	- NH ₂
- Aldehid - Keton	} Gugus Karbonil	- c = o
Asam Karboksilat	Gugus Karboksii	OH - C = O

Common	Alkyl Groups
Name	Formula
Methyl	—CH ₃
Ethyl	—CH ₂ —CH ₃
n-Propyl	-(CH ₂) ₂ -CH ₃
n-Butyl	—(CH ₂) ₃ —CH ₃
Isopropyl	CH ₃ —C—H CH ₃
t-Butyl*	CH ₃ -C-CH ₃ CH ₃

Names of Common Substituent Groups		
Functional Group	Name	
-NH ₂	Amino	
—F	Fluoro	
-CI	Chloro	
—Br	Bromo	
1—	Iodo	
-NO ₂	Nitro	
-CH=CH ₂	Vinyl	

B. HIDROKARBON ALIFATIK

ALKANA Asiklik Siklik (sikloalkana) Rumus Umum: CnH2n+2 Rumus Umum: CnH2n

- Senyawa Hidrokarbon dengan Ikatan Tunggal
 - → Alkana : Senyawa Jenuh
- Setiap Atom C terikat pada 4 atom lain

Tata Nama	: (IUPAC)	
	CH₄	 Metana
	CH ₃ CH ₃	 Etana
	CH ₃ CH ₂ CH ₃	 Propana
	CH ₃ (CH ₂) ₂ CH ₃	 Butana
	CH ₃ (CH ₂) ₃ CH ₃	 Pentana
	CH ₃ (CH ₂) ₄ CH ₃	 Heksana
	CH ₃ (CH ₂) ₅ CH ₃	 Heptana
	CH ₃ (CH ₂) ₆ CH ₃	 Oktana
	CH ₃ (CH ₂) ₇ CH ₃	 Nonana
	CH ₃ (CH ₂) ₈ CH ₃	 Dekana

ALKANA merupakan hidrokarbon jenuh

Name of Hydrocarbon	Molecular Formula	Number of Carbon Atoms	Melting Point (°C)	Boiling Point (°C)
Methane	CH ₄	1	-182.5	-161.6
Ethane	CH ₃ —CH ₃	2	-183.3	-88.6
Propane	CH ₃ -CH ₂ -CH ₃	3	-189.7	-42.1
Butane	CH3-(CH2)2-CH3	4	-138.3	-0.5
Pentane	CH3-(CH2)3-CH3	5	-129.8	36.1
Hexane	CH3-(CH2)4-CH3	6	-95.3	68.7
Heptane	CH3-(CH2)5-CH3	7	-90.6	98.4
Octane	CH3-(CH2)6-CH3	8	-56.8	125.7
Nonane	CH3-(CH2)7-CH3	9	-53.5	150.8
Decane	CH3-(CH2)8-CH3	10	-29.7	174.0

ATURAN TATANAMA Union of Pure and Applied Chemistry (IUPAC)

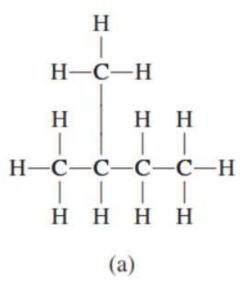
- Tentukan rantai karbon yang paling panjang dan gunakan rantai karbon yang paling panjang tersebut sebagai nama pokok senyawa
- Pemberian nomor pada rantai yang paling panjang di mulai dari ujung rantai yang paling dekat dengan substituen.

2-metilpentana

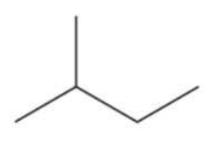
- 3. Nama gugus-gugus substituen yang terikat pada rantai yang paling panjang sebagai gugus alkil. Berikan nomor pada setiap kedudukan gugus alkil yang terikat pada rantai pokok
- 4. Bila terdapat dua/lebih substituen, maka susun- lah berdasarkan urutan abjad. Bila terdapat dua substituen gugus alkil yang sama atau lebih, maka gunakan awalan *di, tri, tetra*, penta dan seterusnya.

2,3-dimetilheksana

3,3-dimetilheksana

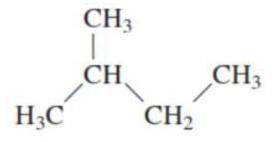

Bila terdapat lebih dari dua gugus alkil, nama gugus disebut sesuai urutan abjad

4-etil-3-metilheptana

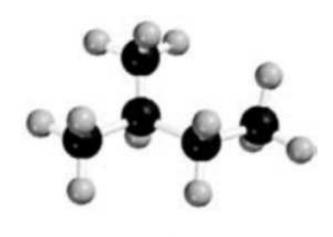

5. Bila terdapat substituent yang berbeda, penyebutannya secara alfabetis

3-bromo- 2-nitroheksana

Menggambarkan struktur kimia C₅H₁₂

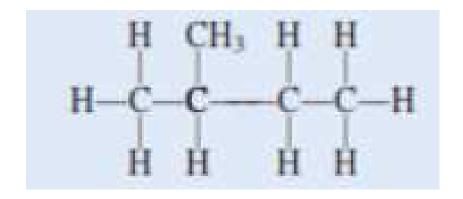


Rumus struktur



(c)

Rumus garis ikatan



(b)
Rumus struktur singkat

(d) Model molekul

- Isomer struktur: Senyawa-senya yang memiliki rumus molekul sama tetapi berbeda susunan atomnya.
- Contoh untuk C₅H₁₂

• 2-metilbutana (td. 27,9°C)

2,2-dimetilpropana (td 9,5°C)

Reaksi Alkana

1. Reaksi pembakaran

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$$
 $\Delta H^o = -890,4 \text{ kJ/mol}$
 $C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$ $\Delta H^o = -3119 \text{ kJ/mol}$

2. Halogenasi → membentuk alkil halida

$$CH_4(g) + 2 Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

metilklorida

Bila klorinnya berlebih, reakasi akan berlanjut sebagai berikut:

$$\operatorname{CH_3Cl}(g) + \operatorname{Cl_2}(g) \longrightarrow \operatorname{CH_2Cl_2}(l) + \operatorname{HCl}(g)$$
 $\operatorname{methylene\ chloride}$
 $\operatorname{CH_2Cl_2}(l) + \operatorname{Cl_2}(g) \longrightarrow \operatorname{CHCl_3}(l) + \operatorname{HCl}(g)$
 $\operatorname{chloroform}$
 $\operatorname{CHCl_3}(l) + \operatorname{Cl_2}(g) \longrightarrow \operatorname{CCl_4}(l) + \operatorname{HCl}(g)$
 $\operatorname{carbon\ tetrachloride}$

Alkena (hidrokarbon tak jenuh)

Rumus umum C_nH_{2n}

Alkena paling sederhana C₂H₄

Pada alkena terdapat isomer geometri: memiliki tipe dan jumlah atom serta ikatan kimia yang sama tetapi berbeda susunannya

Tata nama:
$$CH_2$$
— CH_2 — CH_3
1-butena

$$H_3$$
C
 CH_3
 CH_3
 CH_4
 CH_2
 CH_3
 CH_3
 CH_4
 CH_2
 CH_3
 CH_3
 CH_4
 CH_4
 CH_5
 CH_5
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_7

cis-4-methyl-2-hexene

b.p. 60.3°C

trans-1,2-dichloroethylene
$$\mu = 0$$
b.p. 47.5°C
$$CH_3 - C - CH_3$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

$$CH_3 - CH_3$$

$$H_{3}C$$
 $C=C$
 CH_{3}
 CH_{3}
 CH_{3}

trans-4-methyl-2-hexene

Sifat dan reaksi alkena

Etilena (etena) dibuat melalui proses *cracking* yakni dekomposisi termal hidrokarbon menjadi molekul kecil

Etena bisa dibuat dari etana melalui reaksi berikut:

$$C_2H_6(g) \xrightarrow{Pt} CH_2 = CH_2(g) + H_2(g)$$

Hidrokarbon tak jenuh bisa mengalami reaksi addisi, contoh

a. Hidrogenasi

Hidrogenasi merupakan proses penting dalam industri pangan b. Hidrohalogenasi

Alkuna (hidrokarbon tak jenuh)

Rumus umum C_nH_{2n-2}

Tatanama:

Nama mengikuti deret homolog dari alkana dengan akhiran una

$$HC \stackrel{H_2}{==} C \stackrel{H_2}{---} CH_3$$
 $H_3C \stackrel{C}{==} C \stackrel{C}{=--} CH_3$ 1-butuna 2-butuna

Sifat dan reaksi alkuna

Asetilena (C₂H₂) merupakan alkuna paling sederhana, berupa gas tak berwarna dengan bp -84°C

Pembuatan

a. Secara laboratorium

$$CaC_2(s) + 2H_2O(l) \longrightarrow C_2H_2(g) + Ca(OH)_2(aq)$$

b. Skala industry melalui dekomposisi termal etilena pada 1100°C

$$C_2H_4(g) \longrightarrow C_2H_2(g) + H_2(g)$$

Reaksi alkuna

1. Combution (penting dalam dunia industri)

$$2C_2H_2(g) + 5O_2(g) \longrightarrow 4CO_2(g) + 2H_2O(l)$$
 $\Delta H^{\circ} = -2599.2 \text{ kJ/mol}$

2. Dekomposisi

$$C_2H_2(g) \longrightarrow 2C(s) + H_2(g)$$

3. Hidrogenasi

$$C_2H_2(g) + H_2(g) \longrightarrow C_2H_4(g)$$

4. Hidrohalogenasi dan halogenasi

$$CH_3-C\equiv C-H+HBr\longrightarrow H_3C$$
 $C=C$
 Br
 H
propyne 2-bromopropene

C. HIDROKARBON AROMATIK

- 1. Benzena
- Alkilbenzena
- Alkenilbenzena

Sumber utama : petroleum

Sifat Fisika

- Non polar
- Tidak larut dalam air

Benzen dapat membentuk azeotrop dengan air.

BENZENA (BENZOLUM)

Rumus: C₆ H₆

Menurut Kekule : Benzena mempunyai struktur heksagonal dengan 3 ikatan rangkap terkonyugasi.

IKATAN RANGKAP TERKONYUGASI

$$C = C - C = C - C = C \longrightarrow {}^{\dagger}C - C = C - C = C - C^{-}$$

Elektron tidak di-lokalisasi, tapi di-delokalisasi ->
terjadi penyebaran elektron, disebut : RESONANSI

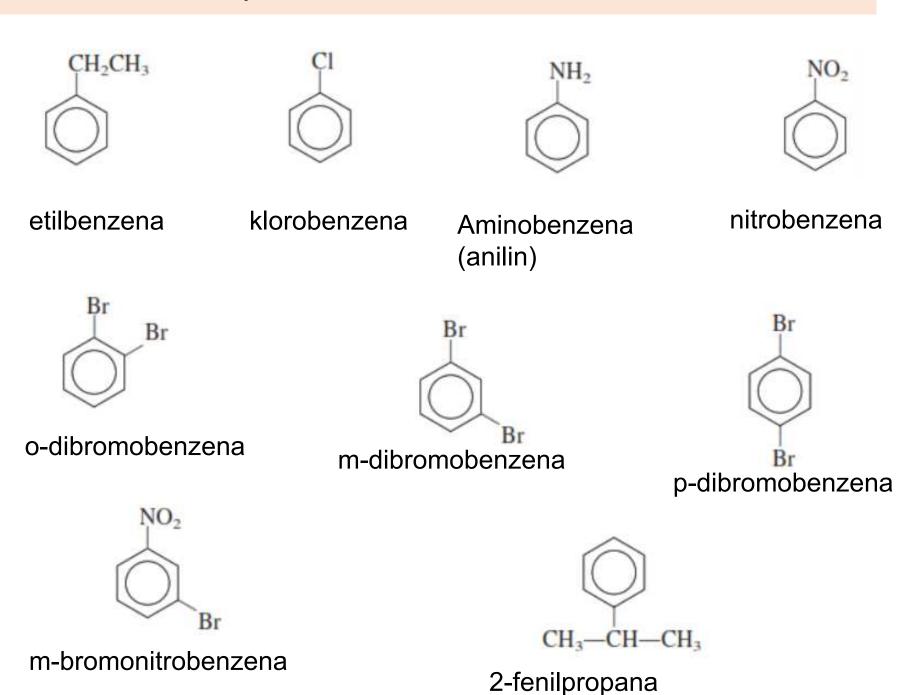
Pada benzena, sistem konyugasi paling sempurna → resonansi terus-menerus → ikatan rangkap pada benzena tempatnya selalu berubah.

Struktur sebenarnya dari benzena terletak diantara kedua struktur resonansi tersebut dan digambarkan sebagai :

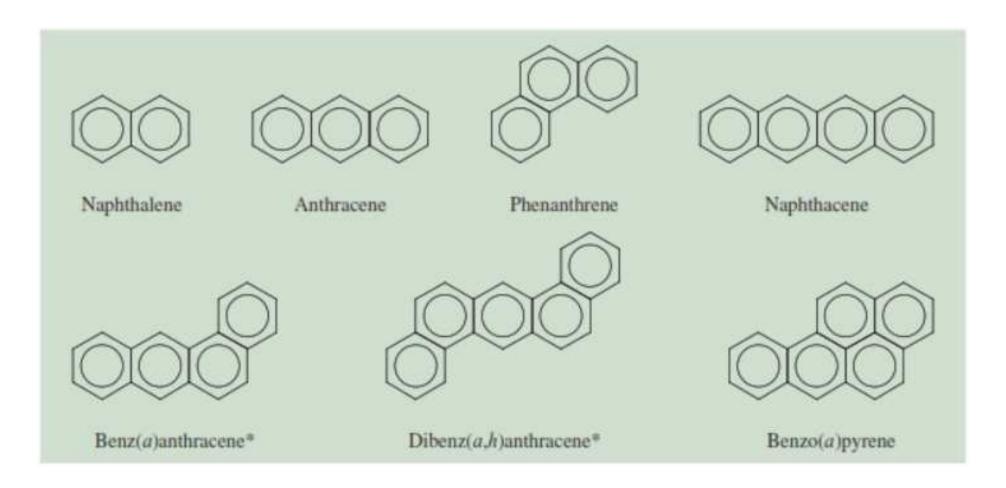
Awan π aromatik

Cincin berupa bidang datar dengan 3 ikatan π \rightarrow mempunyai 6 e π yang terdelokalisasi sempurna sebagai awan e π (awan π aromatik).

Benzena Tersubstitusi


Atom H dari benzena disubstitusi oleh gugus.

Tata Nama:


Cincin benzena sebagai induk, nama gugus sebagai awalan pada benzena.

etilbenzena

Tatanama senyawa aromatik

Beberapa hidrokarbon polisiklik aromatik

^{*} Karsinogenik kuat

Sifat dan reaksi senyawa aromatik

• 1. Halogenasi

• 2. Alkilasi

$$+ CH_3CH_2Cl \xrightarrow{AlCl_3} + HCl$$
ethyl chloride ethylbenzene

D. GUGUS FUNGSIONAL

1. ALKOHOL

Terdapat gugus –OH (hidroksil)

Etilalkohol = etanol bisa dibuat dari

a. Fermentasi

$$C_6H_{12}O_6(aq) \xrightarrow{\text{enzymes}} 2CH_3CH_2OH(aq) + 2CO_2(g)$$

b. Adisi oleh air pada 280°C 300 atm

$$CH_2 = CH_2(g) + H_2O(g) \xrightarrow{H_2SO_4} CH_3CH_2OH(g)$$

Kegunaan:

starting material pada pembuatan pewarna, obat sintetik, kosmetika, minuman

Reaksi:

a. Dehidrogenasi

b. Oksidasi

$$3CH_3CH_2OH + 2K_2Cr_2O_7 + 8H_2SO_4 \longrightarrow 3CH_3COOH + 2Cr_2(SO_4)_3 + 2K_2SO_4 + 11H_2O$$

2. ETER

Pembuatan
$$NaOCH_3 + CH_3Br \longrightarrow CH_3OCH_3 + NaBr$$

sodium methoxide methyl bromide dimethyl ether

Skala industri melalui reaksi kondensasi

$$C_2H_5OH + C_2H_5OH \longrightarrow C_2H_5OC_2H_5 + H_2O$$

Manfaat untuk anestesi

3. ALDEHIDA dan KETON

Mengandung gugus karbonil C=0

Pembuatan:

$$CH_{3}OH + \frac{1}{2}O_{2} \longrightarrow H_{2}C = O + H_{2}O$$
formaldehyde
$$H_{3}C$$

$$C_{2}H_{5}OH + \frac{1}{2}O_{2} \longrightarrow H$$

$$C=O + H_{2}O$$

$$H$$
acetaldehyde
$$H_{3}C$$

$$CH_{3}-C-CH_{3} + \frac{1}{2}O_{2} \longrightarrow H_{3}C$$

$$C=O + H_{2}O$$

$$H_{3}C$$

$$C=O + H_{2}O$$

$$H_{3}C$$

$$C=O + H_{2}O$$

$$H_{3}C$$

Manfaat: formaldehida sebagai starting material industri polimer Sinnamic aldehida digunakan pada pembuatan parfume

4. ASAM KARBOKSILAT

Alkohol dan aldehida bisa teroksidasi membentuk asam karboksilat, asam yang mengandung gugus karboksil -COOH

$$CH_3CH_2OH + O_2 \rightarrow CH_3COOH + H_2O$$

 $CH_3CHO + \frac{1}{2}O_2 \rightarrow CH_3COOH$

Banyak terdapat di alam. Contoh asam asetat/asam cuka, asam stearate Reaksi asam karboksilat

a. Pembentukan ester

$$CH_3COOH + HOCH_2CH_3 \longrightarrow CH_3 - C - O - CH_2CH_3 + H_2O$$

a. Netralisasi

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

a. Pembentukan klorida asam

$$CH_3COOH + PCl_5 \longrightarrow CH_3COCl + HCl + POCl_3$$

5. ESTER

Rumus umum RCOOR'

Dimana R bisa H, alkil, atau hidrokarbon aromatic (aril)

R' bisa berupa alkil atau hidrokarbon aromatic (aril)

Ester digunakan pada pembuatan parfum dan sebagai perisa makanan.

Contoh perisa pisang: isopentilasetat, jeruk: oktil asetat

Reaksi:

a. Hidrolisis ester
$$CH_3COOC_2H_5 + H_2O \rightleftharpoons CH_3COOH + C_2H_5OH$$

ethyl acetate acetic acid ethanol

b. Reaksi saponifikasi/penyabunan

$$C_{17}H_{35}COOC_2H_5 + NaOH \longrightarrow C_{17}H_{35}COO^-Na^+ + C_2H_5OH$$

ethyl stearate sodium stearate

6. AMINA

Amina merupakan basa organik dengan rumus umum R₃N, R adalah alkil atau aril.

Seperti ammonia, bisa bereaksi dengan air

$$RNH_2 + H_2O \longrightarrow RNH_3^+ + OH^-$$

Dengan asam membentuk garam

$$CH_3NH_2 + HCl \longrightarrow CH_3NH_3^+Cl^-$$

methylamine methylammonium chloride

Gugus fungsi penting dan reaksinya

Gugus Fungsi	Nama	Jenis reaksi
c	Karbon-karbon ikatan rangkap dua	Hidrogenasi membentuk alkana
—c <u>≡</u> c—	Karbon-karbon ikatan rangkap tiga	Hidrogenasi membentuk alkena dan alkana
——————————————————————————————————————	Halogen	$CH_3CH_2Br + KI \rightarrow CH_3CH_2I + KBr$
-OH	hidroksil	Oksidasi membentuk aldehida, keton dan asam karboksilat
oo	karbonil	Reduksi menghasilkan alkohol Oksidasi menghasilkan asam karboksilat
О 	karboksil	Esterifikasi dengan alkohol
COR	Ester	Hidrolisis membentuk asam karboksilat dan alkohol
—-N	Amina	Dengan asam membentuk garam ammonium

9/13/2025