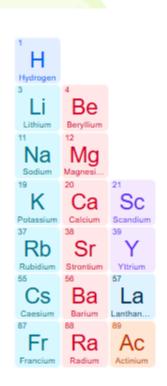
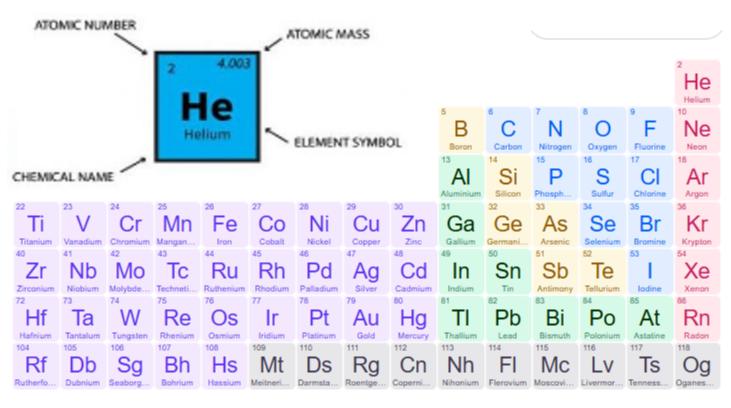

SAP 6. TABEL BERKALA (TABEL PERIODIK)


IUPAC Periodic Table of the Elements


1																	18
1 H hydrogen 1.0080 ± 0.0002	2		Key:									13	14	15	16	17	2 He helium 4.0026 ± 0.0001
3 Li lithium 6.94 ± 0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged stands atomic weigh	ol ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14.007 ± 0.001	8 0 0xygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ± 0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30.974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ± 0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 Sc scandium 44.956 ± 0.001	22 Ti titanium 47.867 ± 0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ± 0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 85.468 ± 0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ± 0.001	40 Zr zirconium 91.224 ± 0.002	41 Nb niobium 92.906 ± 0.001	42 Mo molybdenum 95.95 ± 0.01	43 TC technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ± 0.01	46 Pd palladium 106.42 ± 0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ± 0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 lanthanoids	72 Hf hafnium 178.49 ± 0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ± 0.01	76 Os osmium 190.23 ±0.03	77 Ir iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196.97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	Po polonium	85 At astatine	86 Rn radon
87 Fr francium	Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	Cn copernicium	113 Nh nihonium	114 FI flerovium	MC Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson
[223]	[226]		[267]	[268]	[269]	[270]	[269]	[277]	[281]	[282]	[285]	[286]	[290]	[290]	[293]	[294]	[294]

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57 La lanthanum 138.91 ± 0.01	58 Ce cerium 140.12 ± 0.01	59 Pr praseodymium 140.91 ± 0.01	60 Nd neodymium 144.24 ± 0.01	61 Pm promethium	62 Sm samarium 150.36 ± 0.02	63 Eu europium 151.96 ± 0.01	64 Gd gadolinium 157.25 ± 0.03	65 Tb terbium 158.93 ± 0.01	66 Dy dysprosium 162.50 ± 0.01	67 Ho holmium 164.93 ± 0.01	68 Er erbium 167.26 ± 0.01	69 Tm thulium 168.93 ± 0.01	70 Yb ytterbium 173.05 ± 0.02	71 Lu lutetium 174,97 ± 0.01
AC actinium	90 Th thorium 232.04 ± 0.01	91 Pa protactinium 231.04 ± 0.01	92 U uranium 238.03 ±0.01	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr lawrencium

- Alkali metals
- Metalloids
- Actinides

- Alkaline earth metals
- Reactive non-metals
- O Unknown properties
- Transition metals
- Noble gases

- Post-transition metals
- Lanthanides

1. PENDAHULUAN TABEL BERKALA (TABEL PERIODIK)

- ❖ Tabel Berkala Unsur merupakan peta dasar ilmu kimia yang mengorganisasi seluruh unsur kimia berdasarkan nomor atom, konfigurasi elektron, dan sifat kimia.
- Dapat memprediksi sifat unsur, reaktivitas, serta hubungan antarunsur — hal yang sangat penting dalam kimia farmasi, biokimia, dan teknologi obat
- berfungsi sebagai daftar unsur, dan juga sebagai alat prediktif yang memungkinkan ilmuwan memperkirakan sifat-sifat unsur dan senyawa yang belum ditemukan/ pengembangan obat baru

2. Sejarah Perkembangan Tabel Berkala

- A. Triade Dobereiner (1829): Hukum Triade
- B. John A.R. Newlands (1864): Hukum Oktaf
- C. Dmitri Mendeleev (1869): Menyusun tabel periodik pertama berdasarkan massa atom
- **D. Henry Moseley (1913)**: Menentukan nomor atom sebagai dasar pengurutan modern
- E. Tabel Modern (IUPAC): Berdasarkan konfigurasi elektron

(Sumber: Atkins & Jones, Chemical Principles, 2020)

2. PERKEMBANGAN TABEL BERKALA

A. Hukum Triade - Dobereiner

- ❖ Tahun 1829, Johan Wolfgang Dobereiner, professor kimia di Jerman, mengemukakan bahwa massa atom relatif Strontium sangat dekat dengan massa rata-rata dari dua unsur lain yang mirip dengan strontium, yaitu Kalsium dan Barium.
- Dobereiner juga menemukan beberapa kelompok unsur lain seperti itu.
- ❖ Dobereiner mengambil kesimpulan bahwa unsur-unsur dapat dikelompokkan ke dalam kelompok-kelompok tiga unsur yang disebutnya Triade.
- Meskipun gagasan yang dikemukakan oleh Dobereiner selanjutnya gugur (tidak berhasil), tetapi hal tersebut merupakan upaya yang pertama kali dilakukan dalam menggolongkan unsur.

Penggambaran Triade Doberainer adalah sebagai berikut :

TRIADE	Ar	Rata-rata Unsur ditengah		
Kalsium	40			
Stronsium	?	88,5		
Barium	137			

B. Hukum Oktaf Newlands

- Tahun 1866, John A.R Newlands seorang ahli kimia berkebangsaan Inggris mengemukakan bahwa unsurunsur yang disusun berdasarkan urutan kenaikan massa atomnya mempunyai sifat yang akan berulang tiap unsur kedelapan.
- Artinya, unsur pertama mirip dengan unsur kedelapan,
- unsur kedua mirip dengan unsur kesembilan, dan seterusnya.
- Sifat keperiodikan unsur berdasarkan urutan kenaikan massa atom setiap kelipatan delapan dinamakan hukum oktaf.
- Saat itu, baru ditemukan 60 unsur. Gas mulia tidak termasuk dalam pengelompokan sistem oktaf karena belum ditemukan

Berikut ini pengelompokan unsur berdasarkan hukum oktaf

н	F	CI	Co/Ni	Br	Pd	1	Pt
Li	Na	К	Cu	Rb	Ag	Cs	Τl
Be	Mg	Ca	Zn	Sr	Cd	Ba/V	Pb
В	Al	Cr	Y	Ce/La	U	Ta	Th
С	Si	Ti	In	Zr	Sn	W	Hg
N	Р	Mn	As	Di/Mo	Sb	Nb	Bi
О	5	Fe	Se	Ro/Ru	Te	Au	Os

Beberapa unsur ditempatkan tidak urut sesuai massanya dan Terdapat dua unsur yang ditempatkan di kolom yang sama karena kemiripan sifat

C. Sistem Periodik Mendeleyev → Bapak Tabel Periodik

- Tahun 1869, Dmitri Ivanovich Mendeleyev ahli kimia berkebangsaan Rusia menyusun 65 unsur yang sudah dikenal pada waktu itu.
- Mendeleev mengurutkan unsur-unsur berdasarkan kenaikan massa atom dan sifat kimianya.
- Pada waktu yang sama, Julius Lothar Meyer membuat susunan unsur-unsur seperti yang dikemukakan oleh Mendeleyev.
- Meyer menyusun unsur-unsur tersebut berdasarkan sifat fisiknya.
- Meskipun ada perbedaan, tetapi keduanya menghasilkan pengelompokan unsur yang sama.
- Mendeleyev menyediakan kotak kosong untuk tempat unsurunsur yang waktu itu belum ditemukan, seperti unsur dengan nomor massa 44, 68, 72, dan 100. (gallium,germanium, scandium)
- Mendeleyev telah meramal sifat-sifat unsur tersebut dan ternyata ramalannya terbukti setelah unsur-unsur tersebut ditemukan. Susunan unsur-unsur berdasarkan hukum Mendeleev disempurnakan dan dinamakan sistem periodik Mendeleyev.

Sistem periodik Mendeleev terdiri atas golongan (unsur yang terletak dalam satu kolom) dan periode (unsur yang terletak dalam satu baris).

Tabel sistem periodik Mendeleyev yang dibuat adalah sebagai berikut :

Period e	Gol.I	Gol.II	Gol.III	Gol.IV	Gol.V	Gol.VI	Gol.VII	Gol.VIII	
1	H 1								
2	Li 7	Be 9,4	B 11	C 12	N 14	O 16	F 19		
3	Na 23	Mg 24	Al 27,3	Si 28	P 31	S 32	C 35,5		
4	K 39	Ca 40	? (44)	Ti 48	V 51	Cr 52	Mn 55	Fe 56, Co 59	
								Ni 59, Cu 63	
5	Cu 63	Zn 65	? (68)	? (72)	As 75	Se 78	Br 80		
6	Rb 86	Sr 87	?Yt 88	Zr 90	Nb 94	Mo 96	? (100)	Ru 104, Rh 104	
								Pd 106, Ag 108	
7	Ag 108	Cd 112	In 115	Sn 118	Sb 122	Te 125	I 127		
8	Cs 133	Ba 137	?Di 138	?Ce 140	?	?	?	?	
9	?	?	?	?	?	?	?		
10	?	?	?Er 178	?La 180	Ta 182	W 184	?	Os 195, Ir 197	
11	Au 199	Hg 200	TI 204	Pb 207	Bi 208	?	?	Pt 198, Au 199	1
12	?	?	?	Th 231	?	U 240	?		1

PERKEMBANGAN TABEL BERKALA

Sistem Periodik Unsur	Penemu	Tahun	Dasar Penyusunan
Triade	J. Dobereiner	1829	Kemiripan sifat
Oktaf	J. Newlands	1865	Kenaikan massa atom
Meyer	Lothar Meyer	1864	Kenaikan massa atom
Mendeleev	Dmitri Mendeleev	1869	Kenaikan massa atom
			Kenaikan nomor

D. Henry Moseley (1913)

Menemukan bahwa urutan unsur seharusnya didasarkan pada **nomor atom (Z)**, bukan massa atom.

Inilah yang menjadi dasar tabel periodik modern.

E. Perkembangan Modern (IUPAC)

- Organisasi IUPAC (International Union of Pure and Applied Chemistry) kini mengatur sistem penamaan dan penempatan unsur baru.
- Hingga tahun 2023, tabel periodik telah mencakup 118 unsur, dari Hidrogen (Z=1) hingga Oganesson (Z=118).

2. Struktur dalam Tabel Periodik (Gol, Periode, Blok, Jenis Unsur)

Tabel periodic terdiri dari:

- Kolom (golongan) → menunjukkan jumlah elektron valensi. kolom vertikal pada tabel periodik kimia.
- Baris (periode) → menunjukkan jumlah kulit elektron. Contoh Na (Z= no.atom=11) → Periode 3, Golongan 1A (logam alkali)

Blok utama:

- Blok s: Golongan 1-2 (logam aktif seperti Na, Ca).
- Blok p: Golongan 13–18 (unsur nonlogam dan metaloid seperti C, N, O, F, Cl).
- Blok d: Golongan 3–12 (logam transisi seperti Fe, Cu, Zn adalah unsur obat).
- **Blok f**: Lantanida dan aktinida (unsur tanah jarang danaktif).

1. Golongan → electron valensi

- Golongan adalah kolom vertikal pada tabel periodik kimia.
- Unsur-unsur tersebut memiliki sifat kimia yang sama (karena jumlah elektron terluarnya sama) ditempatkan pada Golongan yg sama.
- Dalam mengklasifikasikan unsur, golongan memiliki peran yang sangat penting.
- ➤ Golongan mencakup unsur-unsur dengan susunan elektron terluar yang sama.
- Golongan ditulis dengan urutan bilangan romawi (I, II, III dst).

2. Periode

- Merupakan sebutan bagi baris horizontal yang ada pada tabel periodik.
- Disusun berdasarkan pertambahan nomor atom
- Unsur2 dalam 1 periode memiliki jumlah orbital atom yg sama
- Tabel periodik memiliki 7 periode berdasarkan tingkat energi atom yang dimiliki.
- tidak semua periode memiliki jumlah unsur yang sama. Periode 1 memiliki jumlah unsur terkecil, yaitu 2.
- jumlah unsur terbesar ada pada periode dengan 32 unsur.

3. BLOK

Tabel periodic modern terdiri dari 4 blok : s,p,d,f.

Bloks

- Pada tabel periodik kimia, blok s merupakan unsur dari dua golongan, yaitu logam alkali dan alkali tanah.
- Blok s juga mencakup unsur tambahan, yaitu hidrogen dan helium.

Blok p

- Pada tabel periodik kimia, blok p merupakan unsur-unsur dari enam golongan.
- Golongan unsur pada blok p antara lain golongan 3A hingga 8A.

17

Blok d

- ➤ Blok d pada tabel periodik terdiri atas 3 hingga 12 golongan mulai dari golongan 3B hingga 2B.
- Semua unsur kimia pada blok d merupakan logam transisi.

Blok f

- Pada tabel periodik, unsur-unsur kimia yang tergabung di dalam blok f cenderung diletakkan di bagian bawah.
- Blok f tidak memiliki nomor golongan dan merupakan unsur lantanida dan aktinida.
- **4. Jenis Unsur**: Klasifikasi unsur meliputi logam, nonlogam, dan metaloid (semilogam) yang memiliki sifat antara logam dan nonlogam

4. Klasifikasi/Jenis Unsur

Jenis Unsur	Contoh	Ciri Umum
Logam	Na, K, Fe, Cu	Menghantarkan listrik, membentuk ion positif
Nonlogam	O, N, Cl, S	Elektronegatif tinggi, pembentuk ikatan kovalen
Metaloid	B, Si, As	Sifat antara logam dan nonlogam

Tren Periodik

Tren periodik muncul akibat **pola konfigurasi elektron** yang berulang dalam tiap periode.

a. Jari-jari Atom

- Menurun ke bawah golongan \rightarrow bertambah besar (kulit bertambah).
- Meningkat ke kanan periode → mengecil (tarikan inti lebih besar).
 - Contoh: Li < Na < K.</p>

b. Energi Ionisasi

Energi untuk melepaskan elektron dari atom.

- Meningkat ke kanan, menurun ke bawah.
- Unsur logam mudah kehilangan elektron (ionisasi rendah).
- Unsur dengan energi ionisasi tinggi sulit membentuk ion positif

Contoh: Na⁺ mudah terbentuk dibanding Mg²⁺

(Sumber: Petrucci et al., General Chemistry, 2017)

c. Keelektronegatifan

- Kemampuan menarik elektron dalam ikatan kimia (Kecenderungan menarik electron)
- Paling tinggi: Fluorin (F = 4,0).
 - Relevan untuk memahami polaritas dan interaksi senyawa obat.
- Contoh: Gugus -OH, -NH, -Cl pada obat memengaruhi kelarutan dan ikatan hidrogen.

d. Afinitas Elektron

Energi yang dilepaskan ketika atom menangkap elektron.

- Meningkat ke kanan periode → unsur nonlogam memiliki afinitas tinggi.
- → Relevan untuk reaksi redoks dalam sistem biologis.

Hubungan Sifat Periodik dan Reaktivitas

Unsur yang memiliki konfigurasi elektron mirip akan memiliki sifat kimia yang mirip.

Contohnya:

- Golongan 1A (Na, K) → logam sangat reaktif, mudah membentuk garam (NaCl, KCl).
- Golongan 17 (F, Cl, Br) → halogen, bersifat oksidator kuat, digunakan dalam antiseptik (Cl₂, I₂).

Beberapa Unsur Penting dalam Bidang Farmasi

Golongan	Unsur	Fungsi / Aplikasi
Alkali (1A)	Na, K	Elektrolit fisiologis, keseimbangan osmotik
Alkali tanah (2A)	Mg, Ca	Kofaktor enzim, struktur tulang
Halogen (7A)	Cl, I	Antiseptik, disinfektan, hormon tiroid
Transisi (3–12)	Fe, Cu, Zn, Pt(cisplatin)	Katalis enzimatik, kompleks obat antikanker
Nonlogam	C, N, O, S, P, Se	Komponen utama molekul organik dan biomolekul

Logam Transisi dalam Farmasi

Logam transisi memiliki orbital d yang sebagian terisi, sehingga mampu membentuk kompleks koordinasi.

Beberapa contohnya:

- Fe (Besi) → komponen hemoglobin, terapi anemia.
- Zn (Seng) → berperan dalam aktivitas enzim dan penyembuhan luka.
- Cu (Tembaga) → antioksidan, katalis biokimia.
- Pt (Platina) → obat antikanker (Cisplatin, Carboplatin).

Isotop dan Aplikasi dalam Farmasi

Isotop adalah atom dari unsur yang sama tetapi berbeda jumlah neutron.

(unsur yang mempunyai jumlah partikel proton atau elektron sama, tetapi jumlah neutron berbeda).

Aplikasi isotop dalam bidang farmasi meliputi:

- . I-131 \rightarrow terapi kanker tiroid.
- . Tc-99m \rightarrow diagnosis pencitraan medis.
- C-14 → studi metabolisme obat.
 Penggunaan isotop memerlukan pemahaman mendalam tentang sifat periodik dan kestabilan nuklir.

Unsur Jejak (Trace Elements)

Unsur mikro seperti **Zn, Cu, Mn, Se** : kofaktor enzim, memiliki peran penting dalam metabolisme tubuh.

- Kekurangan → gangguan enzimatik, stres oksidatif.
- Kelebihan → toksisitas.
 Konsep homeostasis unsur menjadi dasar farmakoterapi dan nutrisi klinik.

Dosis optimum → konsep penting dalam farmakokinetika

Unsur Buatan dan Radioaktif

Beberapa unsur (Z > 92) seperti **Uranium**, **Plutonium**, **Technetium** bersifat radioaktif. Unsur-unsur ini digunakan dalam:

- Terapi radiasi,
- Penanda isotop radioaktif,
- . Produksi energi nuklir untuk alat medis.

Tabel Periodik Modern (IUPAC 2023)

Tabel periodik modern terdiri dari **118 unsur**, dibagi menjadi:

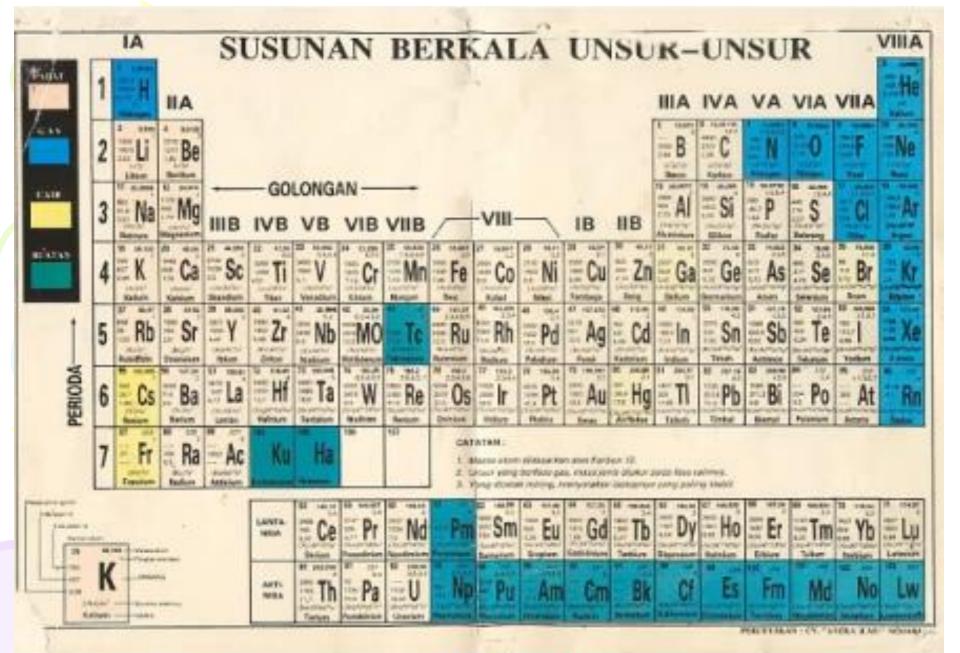
- . 7 periode dan 18 golongan,
- Unsur baru: Tennessine (Ts, Z=117) dan
 Oganesson (Og, Z=118).

Pengelompokkan Struktur modern berdasarkan konfigurasi elektron dan gaya tarik inti terhadap elektron valensi atau sifat kimia.

Golongan dan Periode Unsur dalam Tabel Sistem Periodik Unsur Modern

- Unsur-unsur disusun berdasarkan kenaikan nomor atom.
- Karena sistem periodik yang disusun berbentuk panjang, maka tabel periodik yang sekarang ini disebut tabel periodik panjang.
- Terkadang disebut pula tabel periodik modern, dikarenakan disusun oleh konsep-konsep yang sudah modern.
- Berbeda dengan tabel periodik Mendeleyev, karena berbentuk pendek, sering disebut sistem periodik pendek.
- Pada sistem periodik bentuk panjang, sifat unsurnya merupakan fungsi periodik dari nomor atomnya.
- Hal ini berarti bahwa sifat unsur tergantung dari nomor atomnya.

Golongan unsur pada sistem periodik unsur modern mempunyai nama khusus yaitu sebagai berikut :


Golong	gan	Nama Khusus	Unsur-unsur
IA	1	Alkali	Li, Na, K, Rb, Cs, dan Fr
IIA	2	Alkali Tanah	Be, Mg, Ca, Sr, Ba, dan Ra
IIIA	13	Boron	B, Al, Ga, In, dan Tl
IVA	14	Karbon	C, Si, Ge, Sn, dan Pb
VA	15	Nitrogen	N, P, As, Sb, dan Bi
VIA	16	Oksigen	O, S, Se, Te, dan Po
VIIA	17	Halogen	F, Cl, Br, I, dan At
VIIIA	18	Gas Mulia	He, Ne, Ar, Kr, Xe, dan Rn

Kegunaan dan Pentingnya Tabel Berkala

- Penelitian dan Aplikasi: Digunakan dalam penelitian untuk merancang reaksi kimia, mempelajari sifat unsur, serta dalam teknologi untuk mengembangkan material baru.
- Desain Molekul Obat:
- Pemahaman elektronegativitas dan ukuran atom membantu menentukan polaritas dan ikatan senyawa obat.
- Prediksi Sifat: Membantu memprediksi sifat fisik dan kimia suatu unsur, baik yang sudah dikenal maupun yang belum ditemukan
- Pemilihan Eksipien & Pelarut: Menentukan kestabilan dan kelarutan berdasarkan sifat unsur penyusunnya
- Analisis Unsur dalam Obat: Metode seperti AAS (Atomic Absorption Spectroscopy) digunakan untuk mendeteksi unsur logam
- Formulasi dan Stabilitas: Sifat kimia unsur membantu mengontrol pH, redoks, dan interaksi antar bahan aktif.

Referensi

- 1. Atkins P, Jones L. *Chemical Principles: The Quest for Insight.* 8th ed. New York: Oxford University Press; 2020.
- 2. Petrucci RH, Herring FG, Madura JD, Bissonnette C. *General Chemistry: Principles and Modern Applications.* 11th ed. Boston: Pearson Education; 2017.
- 3. Silberberg MS. *Chemistry: The Molecular Nature of Matter and Change.* 9th ed. New York: McGraw-Hill Education; 2021.
- IUPAC (2023). Periodic Table of the Elements.
 (https://iupac.org/wp-content/uploads/2022/07/IUPAC Periodic Table-04May22 CRA.pdf)

TABEL BERKALA & KONFIGURASI ELEKTRON

- adalah tabel yang berisi susunan unsur-unsur kimia berdasarkan nomor atom dan konfigurasi elektronnya.
- Tabel periodik mengorganisasi unsur berdasarkan konfigurasi elektronnya,
- di mana posisi unsur (periode dan golongan) ditentukan oleh elektron pada kulit terluar (elektron valensi).
- Konfigurasi elektron menggambarkan distribusi elektron-elektron kedalam berbagai tingkat energi (kulit dan subkulit).

Hubungan Posisi dan Konfigurasi:

- Golongan (Kolom): Angka golongan menunjukkan jumlah elektron valensi pada kulit terluar, yang menentukan sifat kimia unsur.
- Periode (Baris): Angka periode menunjukkan nomor kulit terluar atom, yang merupakan kulit valensi.

Konsep Dasar Struktur Atom

Atom terdiri dari:

- Inti atom (proton dan neutron)
- Elektron yang bergerak di sekitar inti pada tingkat energi tertentu
- Elektron memiliki energi yang terkuantisasi, artinya hanya dapat berada pada tingkat energi tertentu (kulit n = 1, 2, 3,...)
- Setiap tingkat energi terbagi menjadi subtingkat (subkulit):
- s, p, d, f dengan kapasitas berbeda untuk menampung elektron.

Subkulit dan Kapasitas Elektron

Subkulit	Jumlah Orbital	Elektron Maksimum	Bentuk Orbital
S	1	2	Bola
р	3	6	Dumbbell (angka 8)
d	5	10	Kompleks (klop empat)
f	7	14	Lebih kompleks

Setiap orbital hanya dapat ditempati oleh **dua elektron** dengan **spin berlawanan** ($\uparrow \downarrow$).

Prinsip-Prinsip Pengisian Elektron

a. Prinsip Aufbau (Tingkat Energi Rendah Terlebih Dahulu)

Elektron akan mengisi orbital mulai dari tingkat energi terendah ke tertinggi:

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d \rightarrow 4p \rightarrow 5s \rightarrow 4d \rightarrow 5p \rightarrow 6s \rightarrow 4f \rightarrow 5d \rightarrow 6p \rightarrow 7s, dst.$$

b. Prinsip Larangan Pauli (Pauli Exclusion Principle)

Tidak ada dua elektron dalam satu atom yang memiliki empat bilangan kuantum yang sama.

Artinya, satu orbital hanya dapat menampung dua elektron dengan spin berlawanan.

c. Aturan Hund (Hund's Rule)

Elektron akan menempati orbital kosong terlebih dahulu sebelum berpasangan, untuk meminimalkan tolak-menolak.

Penulisan Konfigurasi Elektron

- Umumnya ditulis dengan format:
 1s² 2s² 2p6 3s² 3p6 4s² 3d¹0 4p6 ...
- Contoh:

Unsur	Nomor Atom (Z)	Konfigurasi Elektron	Notasi Singkat
н	1	1s ¹	1s ¹
0	8	1s ² 2s ² 2p ⁴	[He] 2s ² 2p ⁴
Na	11	1s ² 2s ² 2p ⁶ 3s ¹	[Ne] 3s ¹
CI	17	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵	[Ne] 3s ² 3p ⁵
Fe	26	[Ar] 4s ² 3d ⁶	[Ar] 3d ⁶ 4s ²
Cu	29	[Ar] 3d ¹⁰ 4s ¹	(penyimpangan stabilitas d ¹⁰)
Zn	30	[Ar] 3d ¹⁰ 4s ²	[Ar] 3d ¹⁰ 4s ²

Penyimpangan pada Logam Transisi

Beberapa logam transisi (misalnya Cu, Cr, Ag) mengalami anomali konfigurasi karena kestabilan subkulit setengah terisi (d⁵) atau penuh (d¹⁰).

Contoh:

- . Cr (Z=24) \rightarrow [Ar] 3d⁵ 4s¹
- Cu (Z=29) → [Ar] 3d¹⁰ 4s¹
 Hal ini terjadi karena konfigurasi tersebut memberikan energi lebih stabil.

Hubungan Konfigurasi Elektron dengan Golongan dan Periode

Nomor kulit terbesar (n) → menunjukkan periode.

```
n = 1 \rightarrow kulit pertama ; n = 2 \rightarrow kulit kedua, dst
```

- makin besar n, makin jauh jarak elektron dari inti
- makin besar n, makin besar energi orbitalnya

```
n 1 2 3 4 ......
kulit K L M N ......
```

 Jumlah elektron valensi (elektron pada kulit terluar) → menentukan golongan.

Jumlah elektron maksimum tiap kulit:

kulit	sub kulit	jumlah elekron maksimum
1	1s	2
2	2s 2p	8
3	3s 3p 3d	18
4	3s 3p 3d 4s 4p 4d 4f	32

Contoh Konfigurasi Elektron

- Na (1s² 2s² 2p⁶ 3s¹) → 1 elektron valensi →
 Golongan 1A, Periode 3.
- Cl (1s² 2s² 2p⁶ 3s² 3p⁵) → 7 elektron valensi →
 Golongan 7A, Periode 3.
 - Hidrogen (H): 1s1
 - **Helium (He):** 1s²
 - **Litium (Li):** [He] 2s¹ (atau 1s² 2s¹)
 - Natrium (Na): [Ne] 3s¹ (atau 1s² 2s² 2p6 3s¹)
 - Oksigen (O): [He] 2s² 2p⁴ (atau 1s² 2s² 2p⁴)

Konfigurasi Elektron dan Sifat Periodik

Konfigurasi elektron menjelaskan **tren periodik** seperti:

- Energi ionisasi: semakin tinggi jika elektron terluar sulit dilepaskan.
- Keelektronegatifan: meningkat seiring bertambahnya tarikan inti efektif.
- . **Reaktivitas:** logam mudah melepaskan elektron, nonlogam mudah menarik elektron.

Konfigurasi Elektron pada Unsur Biologis Penting

Unsur	Konfigurasi Elektron	Fungsi Biologis
Fe	[Ar] 3d ⁶ 4s ²	Transport oksigen (hemoglobin)
Cu	[Ar] 3d ¹⁰ 4s ¹	Reaksi redoks enzimatik
Zn	[Ar] 3d ¹⁰ 4s ²	Kofaktor enzim
Mg	[Ne] 3s ²	Aktivator ATPase
Ca	[Ar] 4s²	Transduksi sinyal dan kontraksi otot

```
Contoh:
_{11}Na=1s^2 2s^2 2p^6 3s^1
     n = 3 = periode 3
     3s^1 = golongan I A (jumlah elektron = 1)
Jika diakhiri dgn subkulit s dan p: golongan utama (A)
_{21}Sc = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^1
   n = 4 = periode 4
   4s^2 3d^1 = golongan III B (jumlah elektron = 3)
_{45}Rh = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^7
  n = 5 = periode 5
5s^24d^7 = golongan VIII B (jmlh elektron=9 \rightarrow Gol VIIIB)

    Konfigurasi elektron unsur X sebagai berikut:

 1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2
 X Terletak pada: periode 4 (4s<sup>2</sup>)
                      Golongan VB (4s<sup>2</sup> 3d<sup>3</sup>)
```

Ionisasi dan Konfigurasi Ion

Ketika atom kehilangan atau menerima elektron, konfigurasi elektronnya berubah.

Kation dari unsur golongan utama terbentuk karena dikeluarkannya satu atau lebih elektron dari kulit n terluar

•Al : [Ne]
$$3s^2 3p^1 \rightarrow Al^{3+}$$
 : [Ne]

Dalam pembentukan **anion** satu atau lebih elektron ditambahkan ke kulit *n* terluar yang terisi sebagian.

.Cl (Z=17):
$$1s^2 2s^2 2p^6 3s^2 3p^5 \rightarrow Cl^-: 1s^2 2s^2 2p^6 3s^2 3p^6$$

Semua anion juga mempunyai konfigurasi gas mulia yang stabil (ns^2np^6) lon terbentuk dengan **kulit luar stabil** (mirip gas mulia).

Hubungan Konfigurasi Elektron dengan Kimia Farmasi

a. Reaktivitas Unsur dalam Senyawa Obat

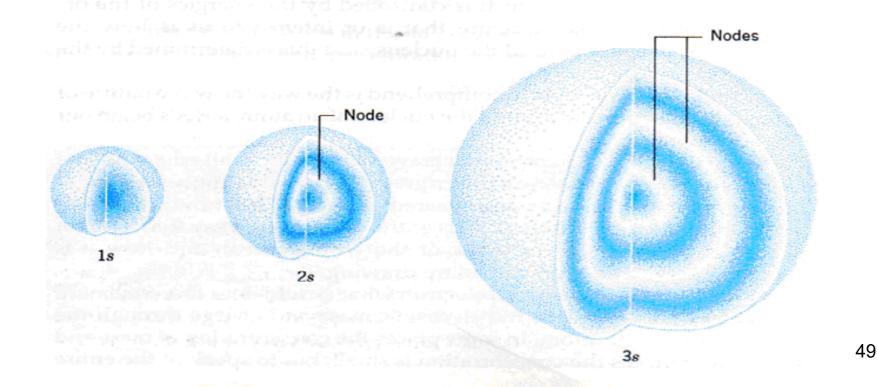
- Unsur dengan orbital d (Fe, Cu, Zn, Pt) berperan penting dalam kompleksasi obat.
- Contoh: Cisplatin (Pt(NH₃)₂Cl₂) digunakan sebagai obat antikanker; aktivitasnya dipengaruhi oleh konfigurasi elektron Pt²⁺ ([Xe] 4f¹⁴ 5d⁸).

b. Ikatan Kimia dan Sifat Fisik Obat

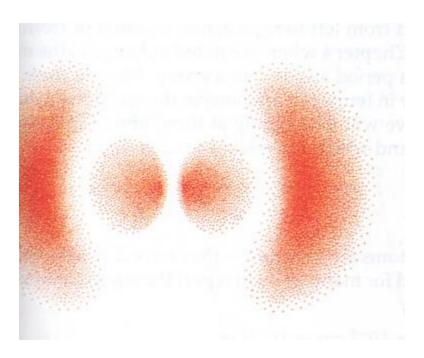
- Keelektronegatifan (berdasarkan konfigurasi) menentukan polaritas dan kelarutan senyawa obat.
- Misal: Gugus -OH, -COOH lebih polar karena unsur O memiliki elektronegativitas tinggi.

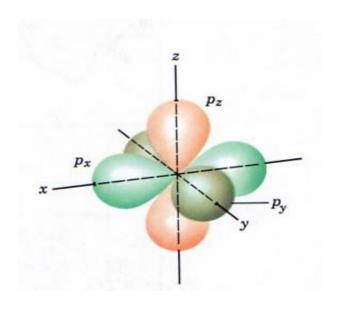
c. Bioelektronik Unsur Logam dalam Enzim

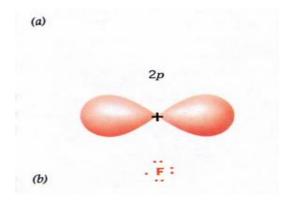
- Fe²⁺/Fe³⁺, Cu²⁺, Zn²⁺ terlibat dalam aktivitas katalitik enzim seperti sitokrom oksidase dan superoksida dismutase.
- Pemahaman konfigurasi elektron logam membantu memahami mekanisme redoks biokimia.


Referensi

- 1. Petrucci RH, Herring FG, Madura JD, Bissonnette C. *General Chemistry: Principles and Modern Applications.* 11th ed. Boston: Pearson Education; 2017.
- 2. Atkins P, Jones L. *Chemical Principles: The Quest for Insight.* 8th ed. New York: Oxford University Press; 2020.
- 3. Miessler GL, Fischer PJ, Tarr DA. *Inorganic Chemistry.* 6th ed. Boston: Pearson Education; 2021.
- 4. Silberberg MS. *Chemistry: The Molecular Nature of Matter and Change.* 9th ed. New York: McGraw-Hill Education; 2021.
- 5. Lippard SJ, Berg JM. *Principles of Bioinorganic Chemistry*. Mill Valley (CA): University Science Books; 2020.

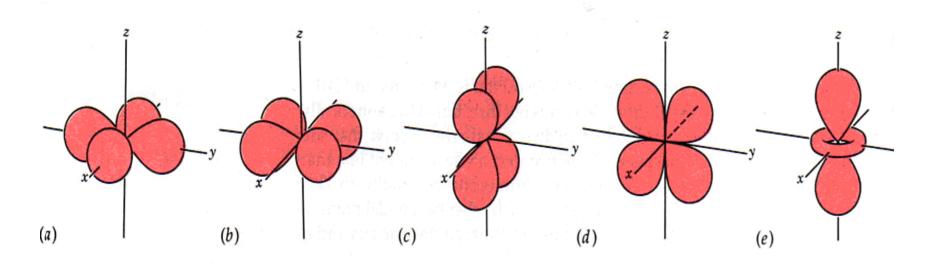

End of Slideshow


Bentuk orbital s


- Orbital s dengan energi tinggi berbeda
- Dari gambar di bawah ini memperlihatkan kepadatan elektron pada 1s, 2s dan 3s orbital
- makin besar nilai bilangan kuantum utama, makin besar ukuran orbital

Bentuk orbital p

Orbital d


 $3d_{x-y}^{\ 2}$

 $3d_{xy}$

 $3d_{xz}$

 $3d_{yz}$

 $3d_z^2$

