

TEKNOLOGI PEMISAHAN

Semester GASAL 2025 - 2026

Dosen: Dr. apt. Zuhelmi Aziz, M.Si.

NIDK: 8969440022

SALAM PANCASILA

TEKNOLOGI PEMISAHAN (2 SKS)

1. Tujuan Pembelajaran

Mata kuliah ini memberikan dasar dalam mengenal, mengetahui dan mengerti seluk beluk proses pemisahan komponen kimia yang dimulai dari proses ekstraksi dan cara-cara pemisahan dengan berbagai metode kromatografi, baik secara analisis kimia secara kualitatif maupun kuantitatif

2. Tujuan Instruksional Khusus

Setelah mengikuti mata kuliah ini, mahasiswa mampu menjelaskan metode destilasi, ekstraksi cair-padat, ekstraksi cair-cair, proses pemisahan senyawa dari campuran/matriks secara kromatografi baik dengan kromatografi kertas, kromatografi lapis tipis, kromatografi gas, kromatografi cair (kolom), kromatografi cair kinerja tinggi, kromatografi permiasi gel, penukar ion, afinitas, dan elektroforesis/dialisis.

Daftar Pustaka

- 1. Miller, J.M., <u>Separation Methods in Chemical Analysis</u>, Wiley Interscience, New York, 1975.
- 2. Harold M. McNair and Ernest J. Bonelli, <u>Basic gas chromatography</u>, 5th edition, 1988.
- 3. Hostettmann, Marston, <u>Preparative chomatography techniques</u>, Springer-Verlag Berlin Heidelberg, 1986.
- 4. Gritter/Bobbitt/Schwarting, <u>Introduction to chromatography</u>, Original English edition published, 1985.
- 5. Edward L.Johnson and Robert Stevenson, <u>Basic liquid chromatography</u>, 1991.
- 6. Stahl, E,. <u>Drugs Analysis by Chromatography and Microscopy</u>, Ann Arbor Michigan, 1985.
- 7. Sudjadi, Metode Pemisahan, Fak. Farmasi, Univ. Gadjah Mada, 1988.
- 8. Furniss B.S, Hannaford A.J., Smith P.W.G, Austin R. Tatchell, Vogel's .<u>Textbook Of Practical Organic Chemistry</u>, 5th Edition, .Longman Scientific & Technical, 1989.
- 9. Veronika R. Meyer. <u>Practical High-Performance Liquid Chromatography Fifth</u>
 <u>Edition</u>.Swiss Federal Laboratories for Materials Testing and Research (EMPA),
 St. Gallen, Switzerland.
- 10. Steen Hansen, STIG Pedersen-Bjergaard, Knut Rasmusen. <u>Introduction to Pharmaceutical Chemical Analysis</u>. 1st edition, published 2012–2012 John Wiley & Sons Ltd

RENCANA PROGRAM KEGIATAN PEMBELAJARAN TEKNOLOGI PEMISAHAN SEMESTER GASAL 2025 - 2026

8 Sept	Pendahuluan: Definisi, Pengertian, Klasifikasi	10 Nov	Kromatografi Cair Kolom,
15 Sept	Ekstraksi ; Pendahuluan, Ekstraksi Cair – Padat	17 Nov	Kromatografi Cair (lanjt), KCV
22 Sept	Ekstraksi Cair – Cair	24 Nov	Kromatografi Cair Kinerja Tinggi
29 Sept	DESTILASI	1 Des	Jenis-jenis KCKT
6 Okt	Kromatografi	8 Des	Kromatografi gas Padat / Cair
13 Okt	Kromatografi cair (Planar), Kromatografi Kertas	15 Des	Elektroforesis dan Dialisis
20 Okt	Kromatografi Lapis Tipis	22 Des	Review
27 Okt – 7 Nov	UTS	5 Jan – 17 Jan 2025	UAS

POKOK BAHASAN

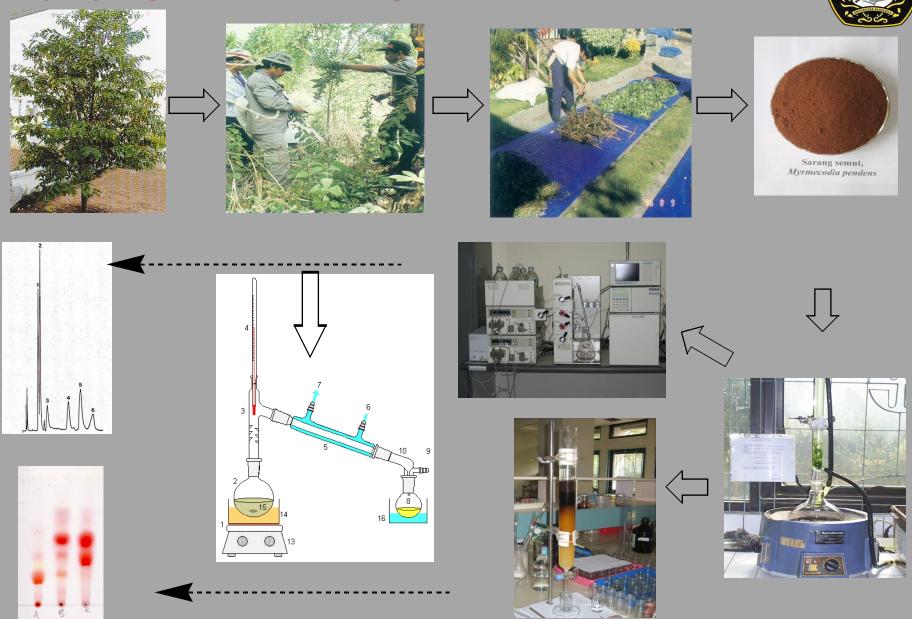
- A. PENDAHULUAN
- **B. EKSTRAKSI**
- C. KROMATOGRAFI
- D. ELEKTROFORESA

PENDAHULUAN

Pertemuan -1

EA September 2025 EA 260825

A. PENDAHULUAN (Definisi, Pengertian, klasifikasi)


- Metode pemisahan adalah salah satu bagian dari kimia analisis yang berkembang sangat cepat.
- Ilmu pemisahan (*separation science*)
 Ilmu yang mempelajari gejala fisika dan kimia yang terlibat dalam proses /pencapaian pemisahan, pengembangan & penggunaan berbagai proses pemisahan.

Pekerjaan di laboratorium analisis pada umumnya tidak dapat dipisahkan dengan salah satu bagian pekerjaan itu yaitu : proses pemisahan campuran zat-zat kimia. *Metode Pemisahan (Separation methode)*

Apa yang dimaksud dengan Pemisahan?

Definisi: pemisahan (separation)

1.Rony:

Separation is the hypothetical condition where there is complete isolation, by m separate macroscopic regions, of each m chemical component which comprise a mixture.

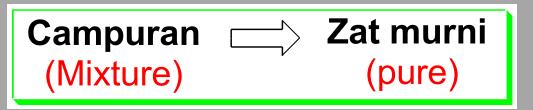
- Kondisi hipotetik di mana setiap komponen kimia terisolasi sempurna dalam daerah makroskopik yang terpisah
- Hipotetik karena tidak mungkin mengisolasi komponen suatu campuran secara sempurna

2. Krager:

pemisahan adalah cara kerja / pengerjaan sehingga suatu campuran (skala industry) dibagi menjadi sekurang-kurangnya 2 fraksi yang berbeda susunannya/komposisinya

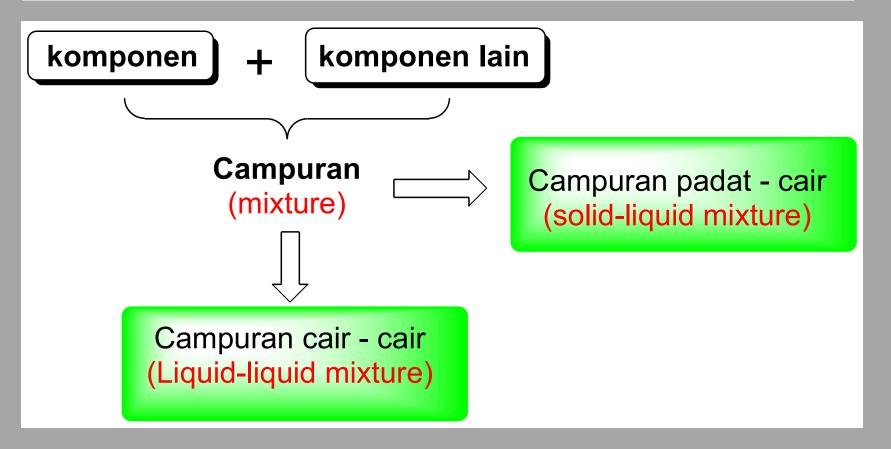
Pemisahan umumnya bertujuan memperbesar fraksi molekul salah satu komponen atau lebih relatif terhadap komponen lainnya.

Kedua orang ini memandang pemisahan dari sudut yang berlainan.


Rony: berdasarkan hasil pemisahan (hypothetic condition) → berdasarkan wadah

Mengapa? → Ada 2 alasan :

- a. Sebenarnya suatu campuran tidak dapat dipisahkan secara sempurna karena adanya kesetimbangan.
- Kadang-kadang hasil pemisahan tidak dipisahkan betul-betul dalam 1 wadah tapi hanya pencatatan dalam perekaman, misalnya dalam kromatografi ada zat yang terbawa oleh pelarut.


Tujuan :

- Separation techniques are used to separate mixtures into its constituent elements and/or compounds. Recall that a mixture is contains elements and/or compounds which are not chemically combined together.
- By separating the constituents of the mixtures, we are able to find out the properties of the known/unknown substances from mixtures and possibly use them for the production of useful substances such as medicines.
- Teknologi pemisahan: untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni tidak tercampur dengan komponen- komponen yang lain. → mengisolasi masingmasing komponen.

Suatu komponen yang tidak bersama dengan dengan komponen lain disebut komponen murni

- Metode pemisahan dan kecermatan pelaksanaan pemisahan campuran zat-zat kimia akan sangat berpengaruh terhadap hasil akhir analisis.
- Metode analisis yang dipakai untuk penentuan zat kimia juga menuntut adanya proses pemisahan sebelum dilakukan pengukuran kadar maupun sifatsifat fisiko kimia.

Metode pemisahan dalam ilmu kimia :

- 1. pemisahan kimia
- 2. pemisahan fisika

Dasar kedua pemisahan tersebut : pemisahan fase atau perbedaan sifat fisika dan kimia dari komponen yang dipisahkan.

- Cara pemisahan yang memanfaatkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang hendak dipisahkan.
- * Salah satu perbedaan sifat fisika adalah: perbedaan yang besar dalam kelarutan masing-masing komponen yang hendak dipisahkan.

Contoh:

- Proses ekstraksi komponen dari cairan dengan memakai cairan yang tidak saling campur.

Pemisahan fisika

Cara pemisahan fisika bertitik tolak pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam satu golongan.

Pemisahan fisik akan memberikan hasil yang lebih spesifik dan terinci dibanding kan pemisahan kimia.

Banyak sekali perbedaan kecil sifat-sifat fisik senyawa organik antara lain :

- daya penguapan
- kemampuan adsorpsi
- kelarutan
- polaritas
- ukuran molekul.

Semua perbedaan kecil sifat-sifat fisik senyawa organik akan melandasi masalahmasalah teknis:

- Destilasi
- sublimasi
- kristalisasi
- partisi dua pelarut
- kromatografi.

Metode pemisahan mencakup:

- 1. Ekstraksi
- 2. kromatografi
- 3. elektroforesa
- 4. destilasi
- 5. dialisis
- 6. pengendapan
- 7. masking

1. Ekstraksi

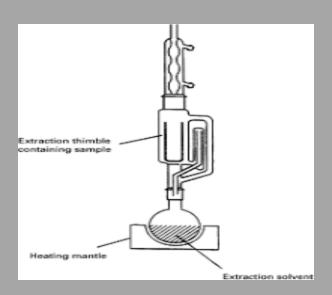
- Proses pemisahan dimana terjadinya distribusi komponen di dalam dua fase.
 - matriks padat : Ekstraksi Cair- Padat

(LSE = Liquid Solid Extraction)

- matriks cair: Ekstraksi Cair-Cair

(LLE=Liquid Liquid Extraction)

- fase 1 = rafinat (raffinate)
- fase 2 = ekstraktan (extractant)


Maserasi

Maserasi kinetik

Perkolasi

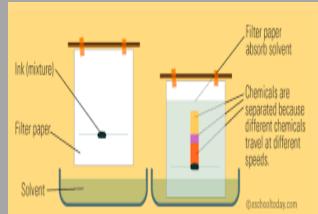
Soxhletasi

Kromatografi adalah tehnik pemisahan secara fisika yang didasarkan atas perbedaan laju migrasi / distribusi analit diantara dua fase yaitu fase diam (stationer phase) dan fase gerak. (mobile phase)

Berdasarkan geometri tempat pemisahan:

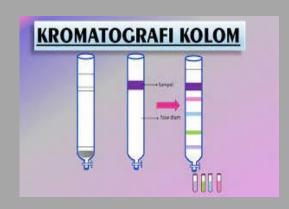
- Kromatografi planar : - Kromatografi Kertas

- Kromatografi Lapis Tipis


- Kromatografi Kolom

fase gerak → Kromatografi Cair

→ Kromatografi Gas



Kromatografi kertas

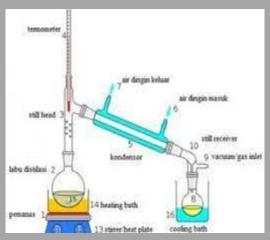
Kromatografi cair vakum

Kromatografi gas

3. Elektroforesa

Dasar pemisahan: gerakan yang bermuatan dalam gradien potensial \rightarrow migrasi differensial zat terlarut dibawah medan listrik.(bisa bermigrasi karena perbedaan potensial)

Jenis:


- free electrophoresis
- zonal electrophoresis

4. Destilasi

Tujuan destilasi adalah pemisahan cairan yang mudah menguap dari senyawa yang tidak menguap atau pemisahan dua atau lebih cairan yang berbeda titik didihnya.

Alat destilasi sederhana

Alat Rotary evaporator

Pemisahan dua fase cair (retentat dan difusat) menggunakan membran semipermiabel.

→ suatu peristiwa osmosa, jarang digunakan untuk analisis rutin , karena proses sangat lambat.

6. Pengendapan

- Pengendapan adalah metode pemisahan lain yang penting yang melibatkan perubahan keadaan.

- Pengendapan tidak sama dengan metode pemisahan lain , proses disini melibatkan reaksi kimia. (KSp , α)

7. Masking

- A masking agent is a <u>reagent</u> used in <u>chemical</u> <u>analysis</u> which reacts with <u>chemical species</u> that may interfere in the analysis.
 - Pemisahan dengan pembentukan senyawa kompleks dengan ligan penghelat (chelating ligand) dan reaksi dengan pereaksi tertentu (Masking agents)

Hubungan antara pemisahan dan analisis:

- Dalam beberapa analisis, pengukuran, baik kualitatif maupun kuantitatif dapat dilakukan langsung pada sampel.
- Namun acapkali tahap pemisahan diperlukan untuk pengukuran yang dilakukan dalam medium bebas atau banyak matrik.
- Pada beberapa kasus, tahap pemisahan merupakan suatu yang sangat sulit dalam analisis.

* Hubungan tahap pemisahan sampai ke analisis kuantitatif dalam proses keseluruhan

- 1. Memilih dan menyiapkan sampel
- 2. Mengukur sampel
- 3. Melarutkan sampel
- 4. Perlakuan pendahuluan, seperti mengatur pH
- 5. Memisahkan konstituen yang dikehedaki
- 6. Mengukur konstituen yang dikehendaki
- 7. Menganalisis data dan pelaporan.

Faktor-faktor yang harus diperhatikan dalam pemilihan metode pemisahan:

1. Permasalahan

- bisa berhubungan dengan sifat/jenis zat yang akan di analisis
- Unsur runutan (mikro) yang akan di analisis/ ditentukan
- Parameter-parameter teknik pemisahan yang spesifik
- 2. Informasi sampel asal ususl/ sejarah bahan :produk suatu industri, bahan alam, perlu diperhitungkan impuritisnya
- 3. Kombinasi metode pemisahan dan penentuan
- 4. Kesederhanaan metode, ketersediaan, serta waktu penentuan
- 5. Keahlian dan kualifikasi SDM

Yang banyak digunakan:

- 1. Ekstraksi pelarut
- 2. Teknik Sorption

1. Ekstraksi Pelarut.

- Ekstraksi pelarut secara luas banyak digunakan untuk prakonsentrasi (peningkatan konsentrasi) -> cukup efektif
- Dengan ekstraksi kita bisa mengambil matriks atau memisahkan unsur-unsur dan runutan secara selektif/kelompok.
- Kalau terpisah secara kelompok diperlukan ekstraksi bertahap.

- Ekstraksi dengan teknik kromatografi → teknik yang sangat baik terutama untuk pemisahan zat-zat yang memiliki sifatsifat yang mirip
- Dengan teknik ini kita bisa menghasilkan prakonsentrasi yang punya efisiensi tinggi.

2. Teknik Sorption

Misalnya:

Pada penukar ion → banyak digunakan apabila metode penentuan terganggu oleh matrik lain, misalnya :HPLC dihubungkan dengan *Conductometer*, logam runutan masih dalam satu kelompok tidak bisa dipisahkan dengan konduktometri.

- Dengan HPLC dengan kolom penukar ion: terjadi pemisahan logam-logam secara selektif→, A,B, dan C yang akan masuk ke konduktometri (Spektro/Neutron Activity Analysis=NAA).
- HPLC dapat menganalisis secara selektif dengan menukar kolom, pengembangan HPLC pada absorbennya.

EFISIENSI PEMISAHAN

- 1. Untuk dua zat terlarut
- 2. Untuk sistem

Untuk dua zat terlarut , faktor yang diperhatikan

- Separation quotient = α
- Separation factor = SB/A
- Resolusi = Rs

- Pada kromatografi : Separation quotient (α)

$$\alpha = \frac{(V'R)B}{(V'R)A}$$

(B komponen yang lebih mudah menguap)
Efisiensi pemisahan akan sangat bergantung pada harga koefisien partisi (Kp)

- Umum:

Pemisahan yang paling efisien bila hasil kali kedua partisi = 1 (yaitu satu lebih suka di rafinat dan satu lebih suka di ekstraktan)

- Kp, dapat dikaitkan kelarutan tapi lebih banyak dengan distribusi,

Terima kasih