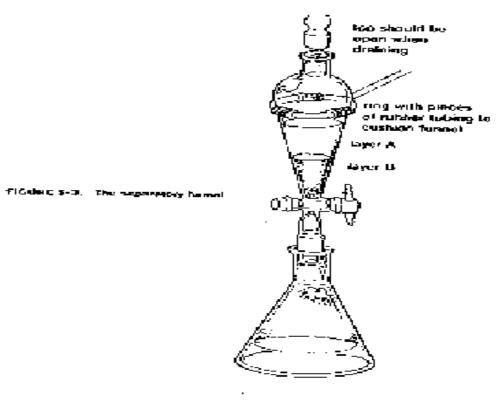
B.3. EKSTRAKSI CAIR-CAIR (ECC)

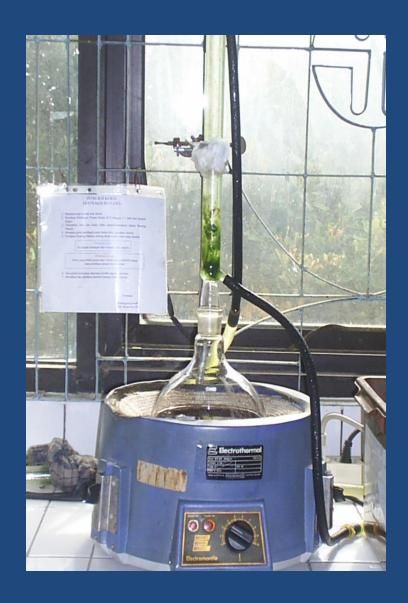
ECC (ekstraksi pelarut)


Solut dipindahkan dari pelarut satu ke pelarut yang lain dan tidak bercampur. Dilakukan pengocokan berulang.

PROSEDUR UMUM:

Dalam corong pisah (separation funnel) dimasukkan larutan solut dalam pelarut ke-1, kemudian masukkan pelarut ke-2 yang tidak bercampur dengan pelarut ke-1, dan dikocok (hati-hati)

Campuran dibiarkan memisah dalam dua lapisan (pelarut air dan pelarut organik).


- Pertanyaan: 1. Pelarut mana yang dibawah dan diatas?
 - 2. Bagaimana cara memisahkan pelarut tersebut?

 $\mathsf{FR}(\mathcal{M},\mathsf{RE}) \subseteq \mathcal{A}_{\mathcal{A}}$. Considering at shalling and unapply the separatory branch

Jenis Pelarut

Pelarut yang digunakan seharusnya tidak bercampur satu sama lainnya (immiscible)

Pelarut organik yang tidak bercampur dengan air :

- benzen, toluen, heksan, xilen
- diklormetan, kloroform, tetraklormetan
- dietil eter
- metil isobutil keton
- hidrokarbon alifatik

Pelarut organik yang dapat bercampur dengan air :

- alkohol alifatik
- asam karboksilat
- aldehid
- keton
- asetonitril
- dimetilsulfoksida
- dioksan

Pelarut air/berair (aqueous) biasanya:

- air suling
- larutan dapar pH tertentu
- larutan elektrolit dalam air
- larutan pembentuk kompleks dalam air
- larutan asam atau basa dalam air
- kombinasi larutan-larutan di atas

Dasar Ekstraksi Cair-Cair (ECC) adalah :

Partisi (Kp) / distribusi (K_D) zat terlarut dalam dua pelarut yang tidak campur (*immiscible*)

$$Kp = \frac{[A]^{raf}}{[A]^{ekst}}$$
 atau

$$K_D = \frac{C_1}{C_2}$$

KD = Koefisien Distribusi atau Koef. Partisi

(Tetapan keseimbangan kelarutan relatif dari suatu solut dalam 2 pelarut yang tidak tercampur)

C₁ = Konsentrasi solut pada larutan pertama (pelarut air)

C₂ = Konsentrasi solut pada larutan kedua (pelarut organik)

Ekstraksi Cair-Cair sederhana

Ekstraksi dilakukan dalam corong pisah dengan cara sebagai berikut :

- sampel dilarutkan dalam salah satu pelarut (rafinat) , masukkan kedalam corong pisah lalu kedalam corong pisah tersebut masukan pelarut lainnya (ekstraktan), segera kocok .
- Setelah pengocokan komponen dalam sampel akan terdistribusi diantara dua fase sampai terjadi kesetimbangan. Idealnya satu komponen tetap berada di rafinat dan yang lainnya terekstraksi ke dalam eksraktan.

- ECC bertahap paling sederhana dan paling banyak dipakai, tetapi teori pendukung masih kurang/ hampir tidak ada
- Rumus untuk menghitung fraksi yang terekstraksi dan yang tidak terekstraksi digunakan : volume rafinat, volume ekstraktan dan Kp.

Setelah n x ekstraksi:

1). Fraksi yang tidak terekstraksi

1-Qn = (Kp. V raf / V ekst+ Kp. V raf)ⁿ

Qn = fraksi yang terekstrasi

2). Fraksi yang terekstraksi.

$$Qn = 1 - (1-Qn) = 1 - (Kp. V raf/Vekst + Kp.V raf)^n$$

Contoh 1:

Pada ekstraksi lintas arus 5 langkah/step, hitunglah fraksi yang terekstrasi pada setiap langkah dan jumlah fraksi yang terekstraksi pada akhir setiap langkah.Diketahui Kp=0,1, V raf=10 ml, V ekstr = 9 ml

- langkah 1 :
$$Q_1$$
= 1 - (0,1x 10 / 9 + 0,1x10)¹
= 1 - (1 / 10) = 0,9
- langkah 2 : Q_2 = 1- (0,1x10 / 9+0,1x10)²
= 1 - (1/10)²
=1- 0,01 = 0,99

- Ekstraksi 5 langkah , pelarut yang digunakan adalah : 45 ml , hasil 0,9999 → 99,99%

Jika dibandingkan dengan jumlah pelarut yang sama 45 ml dengan 1 X ekstraksi?

Q (jumlah fraksi yang terekstraksi)=
$$\frac{V \text{ ekst}}{V \text{ ekst} + V \text{ raf. Kp}}$$

= 45 / 45 + 10 x 0,1
= 45 / 46
=0,9782 \rightarrow 97,82%

RUMUS untuk menghitung fraksi yang terekstraksi:

- 1 x ekstraksi

$$Qn = \frac{V \text{ ekst}}{\text{Vekst + V raf. } K_D}$$

- n kali ekstraksi:

Fraksi yang terekstraksi:

$$Qn = 1 - \left[\frac{K_D \cdot V \text{ raf}}{K_D \cdot V \text{ raf} + V \text{ ekst}} \right]^n$$

Dimana:

Qn = fraksi yang terekstraksi

K_D = koeff distribusi/partisi

V raf = volume pelarut 1

V ekst = volume pelarut 2

Contoh soal:

Sejumlah 5 gram sampel yang dilarutkan dalam 100 ml air (pelarut I) Di ekstraksi / partisi dengan pelarut eter (pelarut II).

Bandingkan hasil yang terjadi antara ekstraksi 3X dengan @ 50 ml dan ekstraksi 1 x dengan 150 ml eter. Diketahui perbandingan distribusi = 0,25

1x ekstraksi:

Qn =
$$150/(150 + 100x0,25)$$

= $150/125 = 0,857$ bgn
= $0,857$ X 5 gram = $4,285$ gram

3 x ekstraksi:

Aplikasi : cukup luas

- yang paling umum digunakan untuk memisah kan ion-ion logam (ekstraksi logam sebagai senyawa kompleks) atau campuran senyawa organik yang kompleks
- 2. Aplikasi lain yang banyak digunakan adalah pemurnian produk hasil reaksi dari matriks yang tidak diinginkan.

Pelaksanaan Ekstraksi cair-cair dapat dlakukan secara :

- 1. bertahap (*stepwise*) → dengan corong pisah.
- sinambung (continuous) → dengan perkolator jalade atau alat Craig (alat distribusi lawan arus)

1. ECC bertahap (stepwise) dengan corong pisah

Beberapa hal yang harus diperhatikan pada cara ini:

- a. Pelarut 1 yang digunakan harus dijenuhkan dulu dengan pelarut 2 (pelarut lawannya) dan sebaliknya.
 contoh:
 - pelarut campuran Air CHCl_{3,} air dijenuhkan dulu dengan CHCl₃ dan CHCl₃ dijenuhkan dengan air.

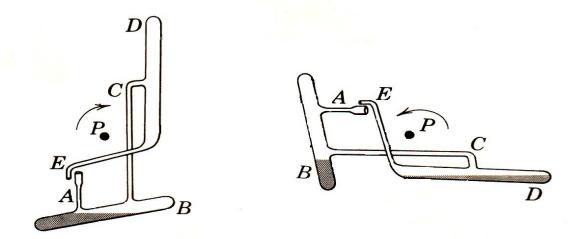
- Contoh pelarut campuran :
 - Air CHCl2
 - Air eter
 - Air n-heksan
 - Air n-butanol
 - Air etilasetat

Dalam pemisahan ini biasanya rafinat adalah Air.

b. Pengocokan jangan dilakukan kuat-kuat, untuk mencegah terjadinya emulsi, hal ini penting diperhatikan terutama dalam mengekstraksi bahan alam karena didalam bahan alam banyak mengandung zat yang bersifat emulgator.

Bila terjadi emulsi, dapat dipecahkan dengan cara:

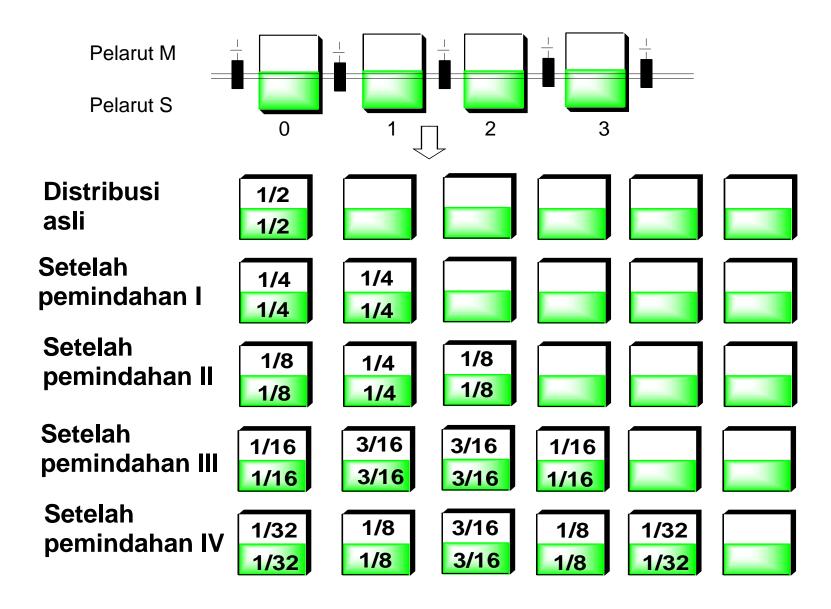
- penyaringan
- sentrifugasi
- menambahkan garam yang netral, biasanya NaCl


c. Titik didih pelarut merupakan hal penting diperhatikan karena kita menginginkan memperoleh senyawa dengan mudah.

contoh:

- etilasetat titik didih 77
- n butanol titik didih 118

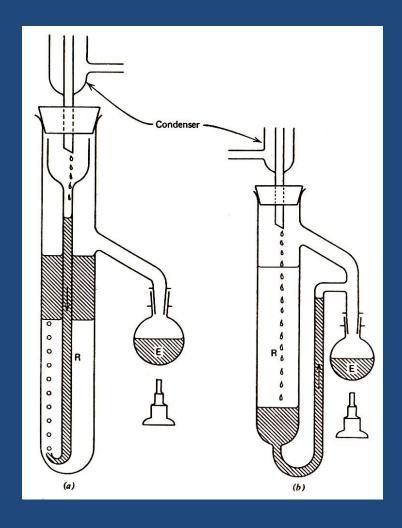
Sifat melarutkan sama tetapi n-butanol sukar dihilangkan karena titik didihnya tinggi, tetapi untuk golongan tertentu misalnya saponin, n-butanol melarutkan lebih baik.


Penyarian Berulang kali dengan Metode Craig

Prosedur Umum:

- Masukkan pelarut (BJ berat) melalui A sehingga mengisi B setengah isi
- Cuplikan (pelarut BJ yang ringan) dimasukkan juga ke dalam tabung B
- Bejana digoyang-goyang dengan sudut 35 °C terhadap poros
- Setelah terjadi 2 lapisan, alat ini diputar 90 °C sesuai arah jarum jam
- Pelarut yang ringan mengalir ke tabung D melalui C
- Alat diputar kembali pada kedudukan semula, pelarut ringan di D akan mengalir ke tabung B tingkat berikutnya melalui E.

Distribusi senyawa terlarut pada proses Craig, K_D =1; dan Vm = Vs



2. ECC sinambung (continuous)

Dalam prosedur umum laboratorium volume ekstraktan dipertahankan konstan dan berulang (held constant and recycled).

Ada dua macam peralatan (perforator Jalade) untuk ECC sinambung yaitu :

- 1) untuk ekstraktan (pelarut organik) lebih berat dari air (rafinat)
- 2) ekstraktan lebih ringan dari air (rafinat)

Gbr alat 2: Eksktraktan lebih ringan dari air (rafinat)

Gambar alat 1: untuk ekstraktan lebih berat dari air (rafinat)

Gambar 2: Perforator Jalade